FULL PAPERS
Angew. Chem. Int. Ed. 2014, 53, 8718–8721; e) B. Peng,
D. Geerdink, C. Farꢆs, N. Maulide, Angew. Chem. 2014,
126, 5566–5570; Angew. Chem. Int. Ed. 2014, 53, 5462–
5466. For a preliminary communication on the inter-
ception of vinyl cations with sulfoxides, see: f) D.
Kaiser, L. F. Veiros, N. Maulide, Chem. Eur. J. 2016, 22,
4727–4732.
46, 1493–1502; h) J. Park, J. Yun, J. Kim, D.-J. Jang, H.
Park, K. Lee, Synth. Commun. 2014, 44, 1924–1929;
i) B. Alcaide, P. Almendros, S. Cembellꢁn, T. M. del
Campo, Adv. Synth. Catal. 2015, 357, 1070–1078. For
mechanistic studies, see: j) M. Edens, D. Boerner, C. R.
Chase, D. Nass, M. D. Schiavelli, J. Org. Chem. 1977,
42, 3403–3408; k) S. Yamabe, N. Tsuchida, S. Yamazaki,
J. Chem. Theory Comput. 2006, 2, 1379–1387; l) Z.
Wang, Y. Chang, X. Gong, L. Dai, Int. J. Quantum
Chem. 2012, 112, 647–652; m) M. Kalek, F. Himo, J.
Am. Chem. Soc. 2012, 134, 19159–19169. For examples
of the concomitant incorporation of a substituent in the
a-position of the newly formed a,b-unsaturated carbon-
yl compound, see: n) L. Ye, L. Zhang, Org. Lett. 2009,
11, 3636–3639; o) M. Yu, G. Zhang, L. Zhang, Org.
Lett. 2007, 9, 2147–2150; p) S. Chen, J. Wang, J. Org.
Chem. 2007, 72, 4993–4996; q) S. Puri, N. Thirupathi,
M. S. Reddy, Org. Lett. 2014, 16, 5246–5249; r) Y.-P.
Xiong, M.-Y. Wu, X.-Y. Zhang, C.-L. Ma, L. Huang,
L.-J. Zhao, B. Tan, X.-Y. Liu, Org. Lett. 2014, 16, 1000–
1003; s) B. S. L. Collins, M. G. Suero, M. J. Gaunt,
Angew. Chem. 2013, 125, 5911–5914; Angew. Chem.
Int. Ed. 2013, 52, 5799–5802; t) B. Alcaide, P. Almen-
dros, E. Busto, A. Luna, Adv. Synth. Catal. 2016, 358,
1526–1533.
[3] a) A. B. Cuenca, S. Montserrat, K. M. Hossain, G.
Mancha, A. Lledꢇs, M. Medio-Simꢇn, G. Ujaque, G.
Asensio, Org. Lett. 2009, 11, 4906–4909; b) B. Lu, Y. Li,
Y. Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem.
Soc. 2013, 135, 8512–8524; c) N. D. Shapiro, F. D. Toste,
J. Am. Chem. Soc. 2007, 129, 4160–4161; d) A. J. Eber-
hart, C. Cicoira, D. J. Procter, Org. Lett. 2013, 15, 3994–
3997; e) A. J. Eberhart, D. J. Procter, Angew. Chem.
2013, 125, 4100–4103; Angew. Chem. Int. Ed. 2013, 52,
4008–4011. See also: f) Z. Jia, E. Gꢈlvez, R. M. Sebas-
tiꢈn, R. Pleixats, A. ꢉlvarez-Larena, E. Martin, A.
Vallribera, A. Shafir, Angew. Chem. 2014, 126, 11480–
11483; Angew. Chem. Int. Ed. 2014, 53, 11298–11301.
For recent examples of the formation of a-aryl ketones
from alkynes, see: g) L. Huang, M. Rudolph, F. Ro-
minger, A. S. K. Hashmi, Angew. Chem. 2016, 128,
4888–4893; Angew. Chem. Int. Ed. 2016, 55, 4808–4813;
h) A. Tlahuext-Aca, M. N. Hopkinson, R. A. Garza-
Sanchez, F. Glorius, Chem. Eur. J. 2016, 22, 5909–5913;
i) J. Um, H. Yun, S. Shin, Org. Lett. 2016, 18, 484–487.
For a recent review on the use of sulfoxides for the
[8] H. Rupe, E. Kambli, Helv. Chim. Acta 1926, 9, 672.
[9] The treatment of 3-ethoxy-1-phenylprop-2-yn-1-ol (28)
with diphenyl sulfoxide (2a) and triflic acid led to the
formation of 29 in low yield and a 2.5/1 ratio of E/Z
isomers.
ꢀ
functionalization of C H bonds, see: j) A. P. Pulis, D. J.
Procter, Angew. Chem. 2016, 128, 9996–10014; Angew.
Chem. Int. Ed. 2016, 55, 9842–9860. For a review on
sulfur transfer chemistry, see: k) H. Liu, X. Jiang,
Chem. Asian J. 2013, 8, 2546–2563.
[4] This transformation can be easily carried out on large
scale, as exemplified by the preparation of 5.74 g
(18.8 mmol, 96%) of product 3a (see the Supporting In-
formation for details and pictures). Large scale work-
up consisted of addition of solid Na2CO3 (2 g), followed
by immediate loading onto silica gel and subsequent
purification.
[10] See the Supporting Information and ref.[2f] for details;
a) R. G. Parr, W. Yang, in: Density Functional Theory
of Atoms and Molecules, Oxford University Press, New
York, 1989. DFT calculations at the M06-2X/[6-31+
G(d,p), PCM] level were performed using the Gaussian
09 package. A complete account of the computational
details and the corresponding list of references are pro-
vided in the Supporting Information.
[11] Differences in the energy barriers of the [3,3]-sigma-
tropic shift are also reflected in the geometries of the
corresponding transition states. Thus, in the case of re-
action with PhS(O)Me, the reactants have to move fur-
ther along the reaction coordinate in order to attain
the transition state, corroborating a more difficult reac-
tion in this case. See the Supporting Information for
details.
[5] M. Hanack, Angew. Chem. 1978, 90, 346–359; Angew.
Chem. Int. Ed. Engl. 1978, 17, 333–341.
[6] As the formation of cyclopropyl ketone 3i was unsuc-
cessful under neat reaction conditions, further solvents
were screened, with nitromethane providing the best
results. The corresponding reaction of 1a with 2a in ni-
tromethane (1M, at 808C) afforded 3a in 79% yield.
Nitromethane as the solvent can therefore be seen as
a viable alternative to neat reaction conditions, albeit
with lower product yield.
[7] a) K. H. Meyer, K. Schuster, Ber. Dtsch. Chem. Ges.
1922, 55, 819–823. For reviews on the Meyer–Schuster
rearrangement, see: b) S. A. Vartanyan, S. O. Banban-
yan, Russ. Chem. Rev. 1967, 36, 670–686; c) D. A.
Engel, G. B. Dudley, Org. Biomol. Chem. 2009, 7,
4149–4158. For general studies of the Meyer–Schuster
rearrangement, see: d) M. Kagawa, Chem. Pharm.
Bull. 1959, 7, 306–315; e) M. Yoshimatsu, M. Naito, M.
Kawahigashi, H. Shimizu, T. Kataoka, J. Org. Chem.
1995, 60, 4798–4802; f) S. S. Lopez, D. A. Engel, G. B.
Dudley, Synlett 2007, 949–951; g) S. S. Kovalꢊskava,
N. G. Kozlov, E. A. Dikusar, Russ. J. Org. Chem. 2010,
[12] See the Supporting Information and ref.[2f] for details
on control competition experiments; In further at-
tempts at elucidation of the reaction mechanism, elec-
trospray ionization mass spectrometry was employed in
order to monitor ionic intermediates or other species
generated from the fragmentation of such transiently
Adv. Synth. Catal. 0000, 000, 0 – 0
13
ꢃ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!