294
U. Groth et al.
LETTER
(15) (a) Lipshutz, B. H. Synlett 1990, 119. (b) Lipshutz, B. H.
Org. React. 1992, 41, 135.
(16) Vinyllithium was prepared via reaction of tetravinyltin with
n-BuLi.
115.38 (CH=CH2), 127.49, 128.12, 129.33, 129.89, 132.46
(arom. C), 138.64 (CH=CH2), 136.98, 137.05, 138.16,
139.04 (arom. C), 167.88 (CHCOO), 210.70 [212.35] (C=O)
(signals of the 2¢R,3¢S-configured diastereomer in brackets).
EI-MS (70 eV): m/z (%) = 549 (3) [M+], 395(11) [M+ –
C8H10O3], 254 (100) [M+ – C8H10O3 – SO2C6H5], 105 (22)
(17) Experimental Procedure: A solution of 10.0 mmol
organolithium compound in Et2O (10 mL) was added to a
solution of 5.0 mmol copper(I) cyanide in Et2O (10 mL)at
–80 °C. After 2 h stirring 5.0 mmol BF3·Et2O were added
and the resultant mixture was cooled at –95 °C. A solution of
1.0 mmol chiral enoate 5 in Et2O (10 mL) was added via
canulla and the obtained mixture was allowed to warm under
stirring to r.t. (18 h). The reaction mixture was quenched
with aq sat. NH4Cl solution (30 mL), extracted with Et2O (2
× 20 mL), the combined organic layer dried over MgSO4 and
evaporated in vacuum. Purification of the residue by flash
chromatography provided the 2,3-substituted
+
[C8H9 ]. Anal. Calcd for C32H39O5NS (549.7): C, 69.92; H,
7.15. Found: C, 69.87; H, 7.28.
Compound 8e (Table 2, entry 5): Rf 0.31 (Et2O–petroleum
ether, 1:2). [a]D20 +82.3 (c 1.5, CHCl3). Bp. 65–70 °C (2
torr). IR(film): 3065 (alkene CH), 1750 (C=O), 1730
(OC=O), 1635 (C=C) cm–1. 1H NMR (250 MHz, CDCl3):
d = 1.54–1.86 (m, 1 H, CH), 2.16–2.60 (m, 3 H, CH, CH2),
3.03 (dd, 3J = 11.6 Hz, 4J = 0.6 Hz, 1 H, C-2-H), 3.14–3.29
(m, 1 H, C-3-H), 3.76 (s, 3 H, OCH3), 5.10 (ddd, 3Jcis = 10.0
Hz, 2J = 1.2 Hz, 4J = 1.2 Hz, 1 H, CH=CH2), 5.17 (ddd,
3Jtrans = 17.0 Hz, 2J = 1.2 Hz, 4J = 1.2 Hz, 1 H, CH=CH2),
5.84 (ddd, 3Jtrans = 17.0 Hz, 3Jcis = 10.0 Hz, 3J = 6.6 Hz, 1 H,
CH=CH2). 13C NMR (62.5 MHz, CDCl3): d = 27.25 (C-4),
38.12 (C-5), 44.83 (C-3), 52.48 (OCH3), 60.77 (C-2), 115.95
(CH=CH2), 135.95 (CH=CH2), 169.10 (COOCH3), 210.71
(C-1). EI-MS (70 eV): m/z (%) = 168 (86) [M+], 137 (85)
[M+ – OCH3], 109 (90) [M+ – COOCH3], 81 (100) [M+ –
C2H3O2 – C2H3 – H]. HRMS: m/z calcd for C9H12O3 (168.2):
168.0786; found: 168.0786.
Compound 10e (Table 2, entry 5): Rf 0.41 (Et2O–
petroleum ether, 1:10). [a]D20 +3.3 (c 1.4, CHCl3). IR(film):
3065 (alkene CH), 1635 (C=C) cm–1. 1H NMR (250 MHz,
CDCl3): d = 1.21–1.27 (m, 6 H, CH3), 1.31–2.08 (m, 6 H,
CH2), 2.46–2.74 (m, 1 H, CHCH=CH2), 3.47–3.66 (m, 2 H,
OCH), 4.91 (ddd, 3Jcis = 10.0 Hz, 2J = 1.5 Hz, 4J = 1.5 Hz, 1
H, CH=CH2), 5.00 (ddd, 3Jtrans = 17.2 Hz, 2J = 1.5 Hz, 4J =
cyclopentanone 7.
Analytical data of selected compounds (Figure 1).
Compound 7e: Rf 0.41 (Et2O–petroleum ether, 1:5).
IR(film): 3040 (alkene CH), 1740 (C=O), 1725 (OC=O),
1650 (alkene C=C), 1610 (arom. C=C) cm–1. 1H NMR (250
MHz, CDCl3): d = 0.87 (d, 3J = 6.5 Hz, 1 H, H-5¢), 1.19 (s, 3
H, CH3), 1.27 (s, 3 H, CH3), 0.80–1.84 (m, 7 H, H-1¢, H-3¢,
H-4¢, H-6¢), 1.88–2.40 (m, 3 H, H-4, H-5, H-2¢), 3.46 (d,
3J = 11 Hz, 1 H, H-2), 2.83–3.05 (m, 1 H, H-3), 4.81 (ddd,
3J = 10.5, 10.5, 4 Hz, 1 H, COOCH, H-1¢), 5.09 (ddd, Jcis
=
10 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.125 (ddd, Jtrans = 17
Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.745 (ddd, Jtrans = 17
Hz, Jcis = 10 Hz, J = 7 Hz, 1 H, CH=CH2), 7.06–7.20 (m, 1
H, arom. H), 7.23–7.38 (m, 4 H, arom. H). 13C NMR (62.5
MHz, CDCl3): d = 21.74 [22.75] (CH3), 25.68 (CH3), 26.58
(cyclopentane-CH2), [26.43] 26.65 (cyclohexane-CH2),
27.37 [27.51] (CH3), [29.52] 31.28 (CHCH3, C-5¢), 34.52
[34.68] (cyclohexane-CH2), 37.79 [38.25] (cyclopentane-
CH2), 39.70 [39.87] (C(CH3)2), 41.38 [41.73] (cyclohexane-
CH2), 43.73 [46.20] (CHCH=CH2, C-3), 49.96 [50.48] (C-
2¢), 60.90 [62.07] (COCHCO, C-2), 75.96 [76.30] (C-1¢),
115.78 [116.24] (CH = CH2), 124.87 [125.18], 125.45
[125.56], [127.84] 127.97 (3 × C-arom.), 138.62 [140.67]
(CH=CH2), 151.51 (C-arom.), 167.34 [168.13] (COO),
210.22 (CO) (signals of the 2R,3S-configured diastereomer
in brackets). EI-MS (70 eV): m/z (100) = 119 [PhC(CH3)2]
(100), 249 (4) [M+ – PhC(CH3)2)], 368 (2) [M+]. Anal. Calcd
for C24H32O3 (368.5): C, 78.22; H, 8.75. Found: C, 78.39; H,
8.85.
1.5 Hz, 1 H, CH=CH2), 5.79 (ddd, 3Jtrans = 17.2 Hz, 3Jcis
=
10.0 Hz, 3J = 7.2 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz,
CDCl3): d = 16.86 (CH3), 16.95 (CH3), 30.57, 37.98 (CH2),
42.16 (C-7), 44.43 (CH2), 78.21 (CHCH3), 78.26 (CHCH3),
113.07 (CH=CH2), 116.84 (OCO), 141.98 (CH=CH2). EI-
MS (70 eV): m/z (%) = 182 (3) [M+], 114 (100) [C6H10O2 ],
+
+
54 (26) [C4H8 ]. Anal. Calcd for C11H18O2 (182.3): C, 72.49;
H, 9.95. Found: C, 72.36; H, 9.84.
3
1
5'
3
O
2
O
N
O
1
O
2
O
O
SO2Ph
1
O
O
5
1'
2'
2
3
2'
Compound 7f (Table 1, entry 11): Rf 0.46 (Et2O–
petroleum ether, 1:1); mp: 59–63 °C. IR(nujol): 3060, 3040
(arom. CH), 1750 (C=O), 1730 (OC=O), 1640 (C=C), 1610,
1595 (arom. C=C), 1350, 1165 (CSO2N) cm–1. 1H NMR
(250 MHz, CDCl3): d = 0.82 (s, 3 H, CH3), 0.88 (s, 3 H, C-
1-CH3), 1.04 (s, 3 H, CH3), 0.90–2.45 (m, 9 H, CH, CH2),
2.02 (s, 3 H, arom. CH3), 2.32 (s, 3 H, arom. CH3), 3.33 (d,
O
O
OCH3
3
3'
7
Ph
8e
10e
7e
7f
Figure 1
Jtrans = 11.2 Hz, 1 H, H-2¢), 3.34–3.50 (m, 1 H, H-3¢), 4.25
(ddd, J = 8.8 Hz, J = 3.4 Hz, 4J = 1.0 Hz, 1 H, H-3), 5.11
(ddd, Jcis = 10.6 Hz, 2J = 1.2 Hz, 4J = 1.2 Hz, 1 H, CH=CH2),
5.27 (ddd, Jtrans = 17.0 Hz, 2J = 1.2 Hz, 4J = 1.2 Hz, 1 H,
CH=CH2), 5.46 (d, J = 8.8 Hz, 1 H, H-2), 5.78 (s, 1 H, arom.
H), 5.98 (ddd, Jtrans = 17.0 Hz, Jcis = 10.6 Hz, J = 6.6 Hz, 1
H, CH=CH2), 6.83 (s, 1 H, arom. H), 7.11 (s, 1 H, arom. H),
7.28–7.57 (m, 5 H, arom. H). 13C NMR (62.5 MHz, CDCl3):
d = 14.30 (C-10), 19.41 (C-8), 19.51 (C-9), 19.69 (C-5),
20.98, 21.29 (2 × arom. CCH3), 26.59 (C-6), 26.62 (C-4¢),
38.13 (C-5¢), [35.53] 43.46 (C-3¢), 45.71 (C-7), 49.38 (C-4),
51.30 (C-1), 59.35 (C-3), 60.77 [63.27] (C-2¢), 77.59 (C-2),
(18) Marx, J. N.; Norman, L. R. J. Org. Chem. 1975, 40, 1602.
(19) (a) For 9b (R = Ph): [a]D20 = +83.4 (c 0.3, CHCl3).
(b) Taber, D. F.; Raman, K. J. Am. Chem. Soc. 1983, 105,
5935. (c) Taura, Y.; Tanaka, M.; Wu, X.-M.; Funakoshi, K.;
Sakai, K. Tetrahedron 1991, 47, 4879.
(20) For 9c (R = t-Bu): [a]D20 = +134.8 (c 1.13, CHCl3); ref.19b
(21) Hiemstra, H.; Wynberg, H. Tetrahedron Lett. 1977, 25,
2183.
(22) (a) Parish, E. J.; Mody, N. V.; Hedin, P. A.; Miles, D. H. J.
Org. Chem. 1974, 39, 1592. (b) Huang, B.-S.; Parish, E. J.;
Miles, D. H. J. Org. Chem. 1974, 39, 2647.
Synlett 2004, No. 2, 291–294 © Thieme Stuttgart · New York