484
J.-h. Lee et al. / Spectrochimica Acta Part A 77 (2010) 478–484
(1a (2.7 × 10−2 h−1) ≈ 1b (2.9 × 10−2 h−1) > 1c (1.9 × 10−2 h−1)) and
Economy (MKE) through the fostering project of the Industrial-
Academic Cooperation Centered University and by the Ministry of
Knowledge Economy (MKE) through the project of GTFAM Regional
Innovation Center (RIC).
2c (2a (2.7 × 10−2 h−1) ≈ 2b (2.9 × 10−2 h−1) > 2c (2.4 × 10−
h
−1)).
The enhancement of bulkiness in higher generation leads to
slower cis → trans thermal isomerization. Cis → trans thermal iso-
merization rate is affected by the generation of azobenzene-cored
dendrimers, but not much altered with exterior group of den-
drimer. Cis → trans thermal isomerization rate of 1a–1c bearing
terminal vinyl groups in methanol/dichloromethane (1/1, v/v) is
similar to that of 2a–2c bearing terminal hydroxy groups.
References
[1] R.W.J. Scott, O.M. Wilson, R.M. Crooks, J. Phys. Chem. B 109 (2005) 692–704.
[2] D.V. McGrath, Mol. Pharm. 2 (2005) 253–263.
[3] A.-M. Caminade, J.-P. Majoral, Acc. Chem. Res. 37 (2004) 341–348.
[4] J.M.J. Fréchet, J. Polym. Sci. A 41 (2003) 3713–3725.
[5] G.R.
Newkome,
C.N.
Moorefield,
F.
Vögtle,
Dendrimers
and
4. Conclusions
Dendrons—Concepts, Synthesis Applications, Wiley-VCH, New York, 2001.
[6] S.M. Grayson, J.M.J. Fréchet, Chem. Rev. 101 (2001) 3819–3867.
[7] M.W.P.L. Baars, E.W. Meijer, Top. Curr. Chem. 210 (2000) 131–182.
[8] D.K. Smith, F. Diederich, Top. Curr. Chem. 210 (2000) 183–227.
[9] A.W. Bosman, H.M. Janssen, E.W. Meijer, Chem. Rev. 99 (1999) 1665–1688.
[10] G.R. Newkome, E. He, C.N. Moorefield, Chem. Rev. 99 (1999) 1689–1746.
[11] O.A. Matthews, A.N. Shipway, J.F. Stoddart, Prog. Polym. Sci. 23 (1998) 1–56.
[12] F. Zeng, S.C. Zimmerman, Chem. Rev. 97 (1997) 1681–1712.
[13] J.M.J. Fréchet, Science 263 (1994) 1710–1715.
[14] D.A. Tomalia, Adv. Mater. 6 (1994) 529–539.
[15] D.A. Tomalia, A.M. Naylor, W.A. Goddard III, Angew. Chem., Int. Ed. Engl. 29
(1990) 138–175.
[16] Y.-S. Shon, D. Choi, Chem. Lett (2006) 644–645.
[17] O.M. Wilson, M.R. Knecht, J.C. Garcia-Martinez, R.M. Crooks, J. Am. Chem. Soc.
128 (2006) 4510–4511.
[18] S.-y. Lim, D. Choi, E.J. Shin, Bull. Korean Chem. Soc. 29 (2008) 1353–1358.
[19] A. Momotake, T.J. Arai, Photochem. Photobiol. C: Photochem. Rev. 5 (2004)
1–25.
[20] S. Hecht, J.M.J. Fréchet, Angew. Chem., Int. Ed. Engl. 40 (2001) 74–91.
[21] Y.-J. Mo, D.-L. Jiang, M. Uyemura, T. Aida, T. Kitagawa, J. Am. Chem. Soc. 127
(2005) 10020–10027.
[22] T. Hasobe, P.V. Kamat, M.A. Absalom, Y. Kashiwagi, J. Sly, M.J. Crossley, K.
Hosomizu, H. Imahori, S. Fukuzumi, J. Phys. Chem. B 108 (2004) 12865–12872.
[23] S. Shinkai, O. Manabe, Top. Curr. Chem. 121 (1984) 67–104.
[24] G.S. Kumar, D.C. Neckers, Chem. Rev. 89 (1989) 1915–1925.
[25] R. Cimiraglia, H.-J. Hofmann, Chem. Phys. Lett. 217 (1994) 430–435.
[26] Z. Sekkat, J. Wood, W. Knoll, J. Phys. Chem. 99 (1995) 17226–17234.
[27] A. Momotake, T. Arai, Tetrahedron Lett. 45 (2004) 4131–4134.
[28] D.-L. Jiang, T. Aida, Nature 388 (1997) 454–456.
[29] D.M. Junge, D.V. McGrath, Chem. Commun. (1997) 857–858.
[30] A. Archut, F. Vögtle, L. De Cola, G.C. Azzellini, V. Balzani, P.S. Ramanujam, R.H.
Berg, Chem. Eur. J. 4 (1998) 699–706.
[31] A. Archut, G.C. Azzellini, V. Balzani, L. De Cola, F. Vögtle, J. Am. Chem. Soc. 120
(1998) 12187–12191.
[32] K.-Y. Kay, K.-J. Han, Y.-J. Yu, Y.D. Park, Tetrahedron Lett. 43 (2002) 5053–5056.
[33] C.J. Hawker, K.L. Wooley, J.M.J. Fréchet, J. Chem. Soc. Perkin Trans. 1 (1993)
1287–1297.
[34] H. Tatewaki, N. Baden, A. Momotake, T. Arai, M. Terazima, J. Phys. Chem. B 108
(2004) 12783–12789.
Photoresponsive arylether dendrimers 2a–2c with azobenzene
unit at the core and hydroxyl groups at the periphery were prepared
from arylether dendrimers 1a–1c with azobenzene unit at the core
and vinyl groups at the periphery. Comparative study of reversible
trans–cis isomerization between dendrimers containing polar exte-
rior groups and dendrimers containing nonpolar exterior groups
was accomplished. Both the reaction rate for trans → cis photoi-
somerization (kt→c) and the reaction rate of cis → trans thermal
back isomerization (kc→t) of dendrimers 1a–1c containing nonpolar
exterior groups in methanol/dichloromethane (1/1, v/v) decrease
with increasing generation. This result is somewhat different from
that for 2a–2c. For dendrimers 2a–2c containing polar exterior
groups, the reaction rate of trans → cis photoisomerization (kt→c
)
increases in higher generation, but the reaction rate of cis → trans
thermal back isomerization (kc→t) decreases in higher generation.
The reaction rates of trans → cis photochemical isomerization and
cis → trans thermal isomerization for azobenzene-cored arylether
dendrimers are affected by both the generation and the exterior
group. It is noteworthy that trans 2c obtained after 75 h dark incu-
bation of cis 2c shows very structured absorption spectra, apart
from original spectra of trans 2c. For 2c, hydrogen bonding between
adjacent terminal hydroxyl groups in cis isomer of folded geometry
may inhibit the formation of unfolded and fully stretched geometry
of trans isomers. It is plausible that twisted trans 2c is formed from
the cis → trans thermal isomerization of central azo group.
Acknowledgements
This work is financially supported by the Ministry of Educa-
tion, Science and Technology (MEST), the Ministry of Knowledge
[35] D. Choi, J.-h. Lee, K.-h. Shin, E.J. Shin, Bull. Korean Chem. Soc. 28 (2007) 983–989.
[36] J.-H. Lee, D. Choi, J.E. Park, E.J. Shin, Bull. Korean Chem. Soc. 29 (2008) 761–766.