A R T I C L E S
Mathews and Tamaoki
Chart 1. Chemical Structure of the Planar Chiral Dopant E-1 and
the Space Filling Representations of the Corresponding Resolved
Enantiomers
of the dopant (weight of dopant/weight of solution) and its
enantiomeric purity r according to the equation
P
-1 ) ꢀCwr
(1)
The proportionality constant ꢀ is referred to as the helical
twisting power (HTP). Phototunable chiral dopants with not only
high helical twisting power but also with large reversible change
in HTP between its isomeric forms are prized. A great deal of
effort has therefore been dedicated to the design of dopants
incorporating photoresponsive moieties such as azobenzenes,8
fulgides,9 diarylethenes,10 spiropyrans,11 and overcrowded
alkenes12 with point, axial, and helical chirality. Accumulated
experimental7-12 and theoretical results13 show that lower
conformational freedom and higher structural rigidity of both
dopant and the liquid crystalline host engender higher HTP
values, whereas a large change in chiral conformations between
the two distinct interconvertible forms of the chiroptic switch
is desirable for achieving better phototunability of the helical
pitch. In spite of the extensive research, reversible color control
in induced cholesterics without added non photoresponsive chiral
codopants is limited to recent reports employing helically chiral
overcrowded alkenes14 and axially chiral binaphthyl azobenzene
derivatives.8c,15 In both cases, a relatively slow thermal isomer-
ization process of the dopants drives the reversibile bathochro-
mic shift to the initial state, limiting their use in dynamic display-
and variable color filter applications. Therefore, the discovery
of new phototunable chiral dopants is important to broadening
the utility of chiral nematic formulations. We report herein on
a design for the first photoresponsive chiral dopant based on
planar chirality and our success in fast photon mode reversible
reflection color control over the entire visible region for the
first time by employing these chiroptic switches as the only
chiral additive in a commercially available nematic liquid
crystalline host.
bicyclic azobenzene derivatives as efficient chiroptic switches
with dynamic control over their racemization rate through
trans-cis photoisomerization.18 In the present study, we
designed a small and rigid azobenzenophane consisting of a
1,5-dioxynaphthalene moiety with methylene linkages bonded
at the meta positions of the photoresponsive unit. The incor-
poration of the 1,5-dioxynaphthalene ring system can impart
an element of planar chirality to the molecule, provided there
is no free rotation of naphthalene unit through the cavity of the
macrocycle.19 Molecular modeling indicated that bridges formed
by two atoms (-CH2-CH2-) could impose planar chirality to
such a molecule (Chart 1). Due to molecular constraints, the
orientation of the two aromatic mesogenic core units (long
molecular axis of naphthalene and azobenzene units) is expected
to generate an inherent twist in the molecule, making them
attractive as twist agents or potential chiral dopants in nematic
solvents (Chart 2). The phototunability of helical twisting power
of chiral dopants obtained by appending a photoresponsive azo
moiety to an already existing point or axially chiral unit is
Although planar chirality is well-known in asymmetric
reactions, catalysis, host-guest interactions,16 and for the
development of optically active liquid crystalline materials,17
their employment as phototunable chiral dopants have so far
not been explored. Recently, we first reported on planar chiral
(8) (a) Ruslim, C.; Ichimura, K. AdV. Mater. 2001, 13, 37–40. (b)
Pieraccini, S.; Masiero, S.; Spada, G. P.; Gottarelli, G. Chem. Commun.
2003, 598–599. (c) Pieraccini, S.; Gottarelli, G.; Labruto, R.; Masiero,
S.; Pandolini, O. S.; Spada, G. P. Chem.-Eur. J. 2004, 10, 5632–
5639. (d) Yoshioka, T.; Ogata, T.; Nonaka, T.; Moritsugu, M.; Kim,
S. N.; Kurihara, S. AdV. Mater. 2005, 17, 1226–1229. (e) Kawamoto,
M.; Aoki, T.; Wada, T. Chem. Commun. 2007, 930–932.
(9) (a) Janicki, S. Z.; Schuster, G. B. J. Am. Chem. Soc. 1995, 117, 8524–
8527. (b) Yokoyama, Y.; Sagisaka, T. Chem. Lett. 1997, 687–688.
(10) (a) Denekamp, C.; Feringa, B. L. AdV. Mater. 1998, 10, 1080–1082.
(b) Yamaguchi, T.; Inagawa, T.; Nakazumi, H.; Irie, S.; Irie, M. Chem.
Mater. 2000, 12, 869–871. (c) Yamaguchi, T.; Inagawa, T.; Nakazumi,
H.; Irie, S.; Irie, M. J. Mater. Chem. 2001, 11, 2453–2458.
(11) Bossi, M. L.; Murgida, D. H.; Aramendia, P. F. J. Phys. Chem. B
2006, 110, 13804–13811.
(16) (a) Zanotti-Gerosa, A.; Malan, C.; Herzberg, D. Org. Lett. 2001, 3,
3687–3690. (b) Ma, Y.; Song, C.; Ma, C.; Sun, Z.; Chai, Q.; Andrus,
M. B. Angew. Chem., Int. Ed. 2003, 42, 5871–5874. (c) Sato, I.; Ohno,
A.; Aoyama, Y.; Kasahara, T.; Soai, K. Org. Biomol. Chem. 2003, 1,
244–246. (d) Gibson, S. E.; Knight, J. D. Org. Biomol. Chem. 2003,
1, 1256–1269. (e) Anderson, J. C.; Osborne, J. D.; Woltering, T. J.
Org. Biomol. Chem. 2008, 6, 330–339.
(12) (a) Huck, N. P. M.; Jager, W. F.; de Lange, B.; Feringa, B. L. Science
1996, 273, 1686–1688. (b) Chen, C.-T.; Chou, Y.-C. J. Am. Chem.
Soc. 2000, 122, 7662–7672. (c) van Delden, R. A.; Koumura, N.;
Harada, N.; Feringa, B. L. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
4945–4949.
(17) (a) Ziminsky, L.; Maltheˆte, J. Chem. Commun. 1990, 1495–1496. (b)
Jacq, P.; Maltheˆte, J. Liq. Cryst. 1996, 21, 291–293. (c) Chuard, T.;
Cowling, S. J.; Ciurleo, M.F-.; Jauslin, I.; Goodby, J. W.; Deschenaux,
R. Chem. Commun. 2000, 2109–2110. (d) Popova, E. L.; Rozenberg,
V. I.; Starikova, Z. A.; Baumann, S. K-.; Kitzerow, H. -S.; Hopf, H.
Angew. Chem., Int. Ed. 2002, 41, 3411–3414. (e) Brettar, J.; Burgi,
T.; Donnio, B.; Guillon, D.; Klappert, R.; Scharf, T.; Deschenaux, R.
AdV. Funct. Mater. 2006, 260–267.
(13) (a) Gottarelli, G.; Hibert, M.; Samori, B.; Solladie, G.; Spada, G. P.;
Zimmermann, R. J. Am. Chem. Soc. 1983, 105, 7318–7321. (b) di
Matteo, A.; Todd, S. M.; Gottarelli, G.; Solladie, G.; Williams, V. E.;
Lemieux, R. P.; Ferrarini, A.; Spada, G. P. J. Am. Chem. Soc. 2001,
123, 7842–7851. (c) Earl, E. J.; Wilson, M. R. J. Chem. Phys. 2003,
119, 10280–10288.
(18) Tamaoki, N.; Wada, M. J. Am. Chem. Soc. 2006, 128, 6284–6285.
(19) (a) Chang, M. H.; Masek, B. B.; Dougherty, D. A. J. Am. Chem. Soc.
1985, 107, 1124–1133. (b) Ballardini, R.; Balzani, V.; Becher, J.;
Fabio, A. D.; Gandolfi, M. T.; Mattersteig, G.; Nielsen, M. B.; Raymo,
F. M.; Rowan, S. J.; Stoddart, J. F.; White, A. J. P.; Williams, D. J.
J. Org. Chem. 2000, 65, 4120–4126.
(14) Eelkema, R.; Feringa, B. L. Chem. Asian J. 2006, 1, 367–369.
(15) Li, Q.; Green, L.; Venkataraman, N.; Shiyanovskaya, I.; Khan, A.;
Urbas, A.; Doane, J. W. J. Am. Chem. Soc. 2007, 122, 12908–12909.
9
11410 J. AM. CHEM. SOC. VOL. 130, NO. 34, 2008