Iminocyclitols from Cyclic Nitrones
1
white solid; m.p. 78–80 °C. [α]2D5 = +17 (c = 1.0, CHCl3). 1H NMR
(400 MHz, CDCl3): δ = 1.27 [s, 9 H, C(CH3)3], 2.19 (dddd, J =
13.6, 9.0, 5.3, 3.2 Hz, 1 H, 3-Ha), 2.65 (dddd, J = 14.0, 9.1, 7.6,
6.5 Hz, 1 H, 3-Hb), 3.95 (dddd, J = 15.0, 9.4, 5.5, 0.6 Hz, 1 H, 2-
Ha), 4.26 (dddd, J = 14.9, 8.9, 6.5, 1.8 Hz, 1 H, 2-Hb), 4.99 (dddd,
J = 5.0, 2.3, 1.1, 0.5 Hz, 1 H, 4-H) ppm. 13C NMR (100 MHz,
[α]2D5 = –130 (c = 0.695, MeOH). H NMR (300 MHz, CDCl3): δ
= 1.33 (s, 3 H, CH3), 1.55 (s, 3 H, CH3), 2.77 (dd, J = 11.4, 4.4 Hz,
1 H, 5-Ha), 3.49 (s, 1 H, 2-H), 3.55 (d, J = 11.4 Hz, 1 H, 5-Hb),
4.72–4.79 (m, 2 H, 3-H and 4-H), 5.98 (br. s, 1 H, NOH) ppm. 13
C
NMR (75 MHz, CDCl3): δ = 24.8 (CH3), 25.9 (CH3), 61.7 (C-5),
63.6 (C-2), 76.6 (C-4), 76.7 (C-3), 112.8 [C(CH3)2], 115.7
CDCl3): δ = 28.7 (C-3), 30.0 (CH3), 62.8 (C-2), 71.5 [C(CH3)3], 75.5 (CN) ppm. C8H12N2O3 (184.16): calcd. C 52.17, H 6.57, N 15.21;
(C-4), 111.0 (CN), 120.2 (C-5) ppm. C9H14N2O2 (182.20): calcd. C found C 52.31, H 6.43, N 15.30.
59.32, H 7.74, N 15.37; found C 59.48, H 7.90, N 15.21.
(2S,3R,4R,5R)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-1-hydroxy-
pyrrolidine-2-carbonitrile (39): The reduction of 36 (0.442 g,
1 mmol), as described above for hydroxylamine 34 to give 37, af-
forded pure 39 (0.444 g, 100%) as an oil. [α]2D5 = +11 (c = 0.27,
(3aR,6aS)-6-Cyano-2,2-dimethyl-4,6a-dihydro-3aH-[1,3]dioxolo[4,5-
c]pyrrole 5-Oxide (35): The oxidation of 32 (0.368 g, 2 mmol), as
described above for hydroxylamine 12 to give 15, afforded pure 35
(0.364 g, 100%) as a white solid; m.p. 128–130 °C. [α]2D5 = –90 (c =
0.535, MeOH). 1H NMR (400 MHz, CDCl3): δ = 1.41 (s, 3 H,
CH3), 1.49 (s, 3 H, CH3), 4.18 (dtd, J = 15.6, 1.2, 0.6 Hz, 1 H, 2-
Ha), 4.29 (dd, J = 15.7, 6.4 Hz, 1 H, 2-Hb), 4.99 (dddd, J = 6.2,
1
CHCl3). H NMR (400 MHz, CDCl3): δ = 3.03 (c, J = 5.4 Hz, 1
H, 5-H), 3.54 (dd, J = 10.0, 5.6 Hz, 1 H, CH2OBn), 3.59 (dd, J =
10.0, 5.4 Hz, 1 H, CH2OBn), 3.76 (d, J = 5.2 Hz, 1 H, 4-H), 3.95
(s, 2 H, 2-H and 3-H), 4.29 (d, J = 11.8 Hz, 1 H, CH2Ph), 4.34 (d,
J = 11.8 Hz, 1 H, CH2Ph), 4.47 (s, 2 H, CH2Ph), 4.48 (d, J =
12.0 Hz, 1 H, CH2Ph), 4.60 (d, J = 12.0 Hz, 1 H, CH2Ph), 7.08–
7.33 (m, 15 H, Ar) ppm. 13C NMR (100 MHz, CDCl3): δ = 62.1
(C-2), 68.7 (C-6), 71.8 (CH2Ph), 71.9 (C-5), 72.6 (CH2Ph), 73.4
(CH2Ph), 79.7 (C-4), 81.7 (C-3), 116.3 (CN), 127.7 (Ar), 127.8 (Ar),
127.9 (Ar), 128.0 (Ar), 128.2 (Ar), 128.4 (Ar), 128.5 (Ar), 128.6
(Ar), 136.6 (Ar), 137.2 (Ar), 137.8 (Ar) ppm. C27H28N2O4 (444.47):
calcd. C 72.95, H 6.35, N 6.30; found C 73.14, H 6.21, N 6.57.
4.9, 1.4, 0.6 Hz, 1 H, 3-H), 5.45 (d, J = 6.1 Hz, 1 H, 4-H) ppm. 13
C
NMR (100 MHz, CDCl3): δ = 25.7 (CH3), 27.1 (CH3), 69.1 (C-2),
73.0 (C-3), 79.3 (C-4), 110.4 (CN), 113.4 [C(CH3)2], 118.4 (C-
5) ppm. C8H10N2O3 (182.14): calcd. C 52.74, H 5.53, N 15.38;
found C 52.68, H 5.64, N 15.50.
(2R,3R,4R)-3,4-Bis(benzyloxy)-2-(benzyloxymethyl)-5-cyano-3,4-di-
hydro-2H-pyrrole 1-Oxide (36): The oxidation of 33 (0.888 g,
2 mmol), as described above for hydroxylamine 12 to give 15, af-
forded pure 36 (0.885 g, 100%) as an oil. [α]2D5 = –35 (c = 2.50,
CHCl3). 1H NMR (400 MHz, CDCl3): δ = 3.71 (dd, J = 3.2,
10.4 Hz, 1 H, CH2OBn), 4.01 (dd, J = 10.4, 4.9 Hz, 1 H, CH2OBn),
4.07–4.11 (m, 1 H, 2-H), 4.40 (dd, J = 3.6, 2.0 Hz, 1 H, 3-H), 4.50
(d, J = 11.8 Hz, 1 H, CH2Ph), 4.51 (d, J = 12.0 Hz, 1 H, CH2Ph),
4.55 (d, J = 11.8 Hz, 1 H, CH2Ph), 4.59 (d, J = 12.0 Hz, 1 H,
CH2Ph), 4.65 (d, J = 11.8 Hz, 1 H, CH2Ph), 4.76 (d, J = 11.8 Hz,
1 H, CH2Ph), 4.84 (dd, J = 2.0, 0.6 Hz, 4-H), 7.10–7.35 (m, 15 H,
Ar) ppm. 13C NMR (100 MHz, CDCl3): δ = 65.7 (CH2OBn), 72.1
(CH2Ph), 72.2 (CH2Ph), 73.6 (CH2Ph), 79.3 (C-3), 79.5 (C-2), 82.0
(C-4), 111.1 (CN), 118.0 (C-5), 127.8 (Ar), 128.0 (Ar), 128.1 (Ar),
128.4 (Ar), 128.5 (Ar), 128.7 (Ar), 136.4 (Ar), 136.5 (Ar), 137.1
(Ar) ppm. C27H26N2O4 (442.45): calcd. C 73.28, H 5.92, N 6.33;
found C 73.41, H 5.78, N 6.49.
(2R,3S)-2-(Aminomethyl)-3-hydroxypyrrolidine Dihydrochloride
(40): The hydrogenation of 31 (0.184 g, 1 mmol), as described above
for hydroxylamine 12 to give 21, afforded pure 40 (0.189 g, 100%)
as a white solid; m.p. Ͼ150 °C (dec.). [α]2D5 = +23 (c = 0.30, H2O).
1H NMR (500 MHz, D2O): δ = 2.00 (ddddd, J = 14.3, 8.3, 5.9, 4.9,
0.6 Hz, 1 H, 4-Ha), 2.26 (dddd, J = 13.9, 8.4, 7.8, 6.0 Hz, 1 H, 4-
Hb), 3.19 (dd, J = 13.9, 7.3 Hz, 2 H, CH2NH2), 3.40–3.44 (m, 2 H,
5-Ha, 5-Hb), 3.69 (dt, J = 7.0, 4.9 Hz, 1 H, 2-H), 4.37 (c, J = 5.0 Hz,
1 H, 3-H) ppm. 13C NMR (125 MHz, D2O): δ = 30.8 (C-4), 38.4
(CH2NH2), 43.9 (C-5), 62.2 (C-2), 72.2 (C-3) ppm. C5H14Cl2N2O
(189.07): calcd. C 31.76, H 7.46, N 14.81; found C 31.60, H 7.60,
N 14.78.
(2S,3S)-2-(Aminomethyl)-3-hydroxypyrrolidine Dihydrochloride
(41): The hydrogenation of 34 (0.182 g, 1 mmol) or 37 (0.184 g,
1 mmol), as described above for hydroxylamine 12 to give 21, af-
forded pure 41 (0.189 g, 100 %) as a white solid; m.p. Ͼ150 °C
(2S,3S)-3-tert-Butoxy-1-hydroxypyrrolidine-2-carbonitrile (37): So-
dium borohydride (76 mg, 2 mmol) was added portionwise to a co-
oled (0 °C) solution of nitrone 34 (0.182 g, 1 mmol) in MeOH
(6 mL). The reaction mixture was stirred for an additional hour
and satd. aq. NH4Cl (5 mL) was added. After stirring for 15 min
the reaction mixture was diluted with diethyl ether (20 mL). The
organic layer was separated, and the aqueous layer was extracted
with diethyl ether (2ϫ20 mL). The combined organic extracts were
washed with brine, dried with MgSO4, and filtered, and the solvent
was eliminated under reduced pressure to give pure 37 (0.184 g,
100%), which did not need further purification; oil. [α]2D5 = +23 (c
= 0.97, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 1.21 [s, 9 H,
C(CH3)3], 1.86 (dddd, J = 12.1, 8.4, 8.3, 4.6 Hz, 1 H, 4-Ha), 2.25
(dtd, J = 12.8, 8.2, 4.5 Hz, 1 H, 4-Hb), 2.87 (dt, J = 10.1, 8.3 Hz,
1 H, 5-Ha), 3.37 (ddd, J = 9.9, 9.0, 4.6 Hz, 1 H, 5-Hb), 3.88 (d, J
= 6.7 Hz, 1 H, 2-H), 4.30 (ddd, J = 7.9, 6.8, 4.7 Hz, 1 H, 3-H) ppm.
13C NMR (50 MHz, CDCl3): δ = 27.4 [C(CH3)3], 31.3 (C-4), 54.7
(C-5), 64.4 (C-2), 68.3 (C-3), 74.5 [C(CH3)3], 115.6 (CN) ppm.
C9H16N2O2 (184.21): calcd. C 58.67, H 8.75, N 15.21; found C
58.73, H 8.92, N 15.11.
(dec.). [α]2D5 = +66 (c = 1.0, H2O). H NMR (400 MHz, D2O): δ =
1
2.03 (dddd, J = 14.3, 7.7, 3.5, 1.5 Hz, 1 H, 4-Ha), 2.16 (dtd, J =
14.0, 9.9, 4.2 Hz, 1 H, 4-Hb), 3.26–3.54 (m, 4 H, 5-Ha, 5-Hb and
CH2NH2), 3.72 (dt, J = 6.6, 3.5 Hz, 1 H, 2-H), 4.53 (dd, J = 4.0,
1.5 Hz, 1 H, 3-H) ppm. 13C NMR (100 MHz, D2O): δ = 31.7 (C-
4), 35.4 (C-5 or CH2NH2), 43.5 (C-5 or CH2NH2), 59.9 (C-2), 69.0
(C-3) ppm. C5H14Cl2N2O (189.07): calcd. C 31.76, H 7.46, N 14.81;
found C 31.54, H 7.62, N 14.73.
(2S,3S,4R)-2-(Aminomethyl)-3,4-dihydroxypyrrolidine Dihydrochlo-
ride (42): The hydrogenation of 32 (0.184 g, 1 mmol), as described
above for hydroxylamine 12 to give 21, afforded pure 42 (0.204 g,
100%) as a white solid; m.p. Ͼ150 °C (dec.). [α]2D5 = –19 (c = 0.33,
MeOH). 1H NMR (400 MHz, D2O): δ = 3.23 (dd, J = 13.2, 1.2 Hz,
1 H, 5-Ha), 3.31 (dd, J = 13.9, 5.7 Hz, 1 H, CH2NH2), 3.36 (dd, J
= 14.0, 7.5 Hz, 1 H, CH2NH2), 3.43 (dd, J = 13.2, 4.1 Hz, 1 H, 5-
Hb), 3.60 (dd, J = 9.4, 7.6, 6.1 Hz, 1 H, 2-H), 4.04 (dd, J = 9.5,
4.0 Hz, 1 H, 3-H), 4.18 (dt, J = 4.1, 1.0 Hz, 1 H, 4-H) ppm. 13C
NMR (100 MHz, D2O): δ = 40.3 (CH2NH2), 51.8 (C-5), 58.6 (C-
2), 70.3 (C-4), 75.5 (C-3) ppm. C5H14Cl2N2O2 (205.06): calcd. C
29.28, H 6.88, N 13.66; found C 28.48, H 6.95, N 13.42.
(3aS,4R,6aR)-5-Hydroxy-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo-
[4,5-c]pyrrole-4-carbonitrile (38): The reduction of 35 (0.182 g,
1 mmol), as described above for hydroxylamine 34 to give 37, af-
forded pure 38 (0.184 g, 100%) as a white solid; m.p. 144–145 °C;
(2R,3S,4R)-2-(Aminomethyl)-3,4-dihydroxypyrrolidine Dihydrochlo-
ride (43): The hydrogenation of 35 (0.182 g, 1 mmol) or 38 (0.184 g,
Eur. J. Org. Chem. 2008, 2929–2947
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2941