C O M M U N I C A T I O N S
not involved in the CdO‚‚‚H-N intramolecular H-bonding net-
work. Both O-H‚‚‚O and C-H‚‚‚O types of H-bonds participate
in the solvation. The conformations of the peptide in the two crystals
strictly mirror those occurring in the two solvents. Interestingly,
Karle, Balaram, and their co-workers have already reported the
X-ray diffraction structures of the same, CR,R-di-n-propylglycine
containing, heptapeptide sequence (having a different N-terminal
group) in the 310- and R-helix conformations despite being
crystallized from the same solvent (the 310-helical structure is
monohydrated).16 The present investigation highlights that the
interconversion between R- and 310-helices might be allowed even
in peptides exclusively composed by CR-tetrasubstituted R-amino
acids and provides clues for a deeper understanding of the
interactions of HFIP with helical peptides.
Supporting Information Available: Preparative procedures and
characterization data; CD spectra; X-ray diffraction details, including
crystallographic data in CIF format. This material is available free of
References
(1) (a) Toniolo, C.; Benedetti, E. Trends Biochem. Sci. 1991, 16, 350. (b)
Bolin, K. A.; Millhauser, G. L. Acc. Chem. Res. 1999, 32, 1027.
(2) Barlow, D. J.; Thornton, J. M. J. Mol. Biol. 1988, 201, 601.
(3) (a) Shea, J. E.; Brooks, C. L. Annu. ReV. Phys. Chem. 2001, 52, 499. (b)
Millhauser, G. L. Biochemistry 1995, 34, 3873.
(4) (a) Pavone, V.; Di, Blasio, B.; Santini, A.; Benedetti, E.; Pedone, C.;
Toniolo, C.; Crisma, M. J. Mol. Biol. 1990, 214, 633. (b) Gessman, R.;
Bru¨ckner, H.; Petratos, K. J. Pept. Sci. 2003, 9, 753.
(5) (a) Karle, I. L.; Balaram, P. Biochemistry 1990, 29, 6747. (b) Toniolo,
C.; Crisma, M.; Formaggio, F.; Peggion, C. Biopolymers (Pept. Sci.) 2001,
60, 396.
(6) (a) Hungerford, G.; Martinez-Insua, M.; Birch, D. J. S.; Moore, B. D.
Angew. Chem., Int. Ed. Engl. 1996, 35, 326. (b) Pengo, P.; Pasquato, L.;
Moro, S.; Brigo, A.; Fogolari, F.; Broxterman, Q. B.; Kaptein, B.; Scrimin,
P. Angew. Chem., Int. Ed. 2003, 42, 3388. (c) Bellanda, M.; Mammi, S.;
Geremia, S.; Demitri, N.; Randaccio, L.; Broxterman, Q. B.; Kaptein, B.;
Pengo, P.; Pasquato, L.; Scrimin, P. Chem. Eur. J. 2007, 13, 407.
(7) Polese, A.; Formaggio, F.; Crisma, M.; Valle, G.; Toniolo, C.; Bonora,
G. M.; Broxterman, Q. B.; Kamphuis, J. Chem. Eur. J. 1996, 2, 1104.
(8) (a) Yoder, G.; Polese, A.; Silva, R. A. G. D.; Formaggio, F.; Crisma, M.;
Broxterman, Q. B.; Kamphuis, J.; Toniolo, C.; Keiderling, T. A. J. Am.
Chem. Soc. 1997, 119, 10278. (b) Mammi, S.; Rainaldi, M.; Bellanda,
M.; Schievano, E.; Peggion, E.; Broxterman, Q. B.; Formaggio, F.; Crisma,
M.; Toniolo, C. J. Am. Chem. Soc. 2000, 122, 11735. (c) Maekawa, H.;
Toniolo, C.; Broxterman, Q. B.; Ge, N.-H. J. Phys. Chem. B 2007, 111,
3222. (d) Moretto, A.; Crisma, M.; Formaggio, F.; Kaptein, B.; Broxter-
man, Q. B.; Keiderling, T. A.; Toniolo, C. Biopolymers (Pept. Sci.) 2007,
88, 233.
(9) Toniolo, C.; Polese, A.; Formaggio, F.; Crisma, M.; Kamphuis, J. J. Am.
Chem. Soc. 1996, 118, 2744.
(10) Tanaka, M.; Demizu, Y.; Doi, M.; Kurihara, M.; Suemune, H. Angew.
Chem., Int. Ed. 2004, 43, 5360.
(11) Go¨rbitz, C. H. Acta Crystallogr. B 1989, 45, 390.
(12) Formaggio, F.; Pantano, M.; Valle, G.; Crisma, M.; Bonora, G. M.;
Mammi, S.; Peggion, E.; Toniolo, C.; Boesten, W. H. J.; Schoemaker, H.
E.; Kamphuis, J. Macromolecules 1993, 26, 1848.
(13) (a) Berkessel, A.; Adrio, J. A.; Hu¨ttenhain, D.; Neudo¨rfl, J. M. J. Am.
Chem. Soc. 2006, 128, 8421. (b) Chatterjee, C.; Martinez, D.; Gerig, J.
T. J. Phys. Chem. B 2007, 111, 9355. (c) He, S.-W.; Asakura, T.; Kishore,
R. Biomacromolecules, 2006, 7, 18. (d) Sirangele, I.; Dal, Piaz, F.; Malmo,
C.; Casillo, M.; Birolo, L.; Pucci, P.; Marino, G.; Irace, G. Biochemistry
2003, 42, 312. (e) Chem. Eng. News 1964, NoV. 30, p. 32.
(14) (a) Crisma, M.; Deschamps, J. R.; George, C.; Flippen-Anderson, J. L.;
Kaptein, B.; Broxterman, Q. B.; Moretto, A.; Oancea, S.; Jost, M.;
Formaggio, F.; Toniolo, C. J. Pept. Res. 2005, 65, 564. (b) Ishida, Y.;
Aida, T. J. Am. Chem. Soc. 2002, 124, 14017.
(15) Crisma, M.; Moretto, A.; Rainaldi, M.; Formaggio, F.; Broxterman, Q.
B.; Kaptein, B.; Toniolo, C. J. Pept. Sci. 2003, 9, 620.
(16) Vijayalakshmi, S.; Balaji Rao, R.; Karle, I. L.; Balaram, P. Biopolymers
2000, 53, 84.
Figure 3. HFIP molecules bound to the carbonyl oxygen atoms in the
C-terminal region of the two independent peptide molecules (A and B) in
the asymmetric unit of the R-helical Ac-[L-(RMe)Val]7-NHiPr (2). Peptide
N-H and HFIP hydrogen atoms are shown (all other hydrogen atoms have
been omitted for clarity). Dashed lines represent intramolecular CdO‚‚‚
H-N hydrogen bonds, while dotted lines represent (HFIP) O-H‚‚‚OdC
(peptide) and (HFIP) C-H‚‚‚OdC (peptide) hydrogen bonds. Major and
minor occupancy sites for the hydroxyl group of one of the two HFIP
molecules bound to peptide A or B are indicated by solid and open C-O
bonds, respectively.
In conclusion, we have described an example of a solvent-driven
R/310-helix dimorphism for a peptide molecule in the crystalline
state. The fully CR-methylated homo-peptide Ac-[L-(RMe)Val]7-
NHiPr is completely 310-helical when its crystals are grown from
a MeOH solution. By contrast, it is folded in the R-helical
conformation when crystallized from HFIP, an alcohol of high
polarity. In this latter case, two cocrystallized solvent molecules
bind to the three C-terminal peptide (or amide) carbonyl functions
JA076656A
9
J. AM. CHEM. SOC. VOL. 129, NO. 50, 2007 15473