886 Journal of Natural Products, 2006, Vol. 69, No. 6
Morikawa et al.
55, v/v)] to furnish (2R)-hydroxy-2-(2-methylpropyl)butanedioic acid11
(1b, 1.8 mg, 79% from 1; 1.7 mg, 71% from 2), respectively. Through
a similar procedure, a solution of 3 (7.5 mg, 0.008 mmol), 4 (7.0 mg,
0.007 mmol), 5 (7.0 mg, 0.007 mmol), 6 (9.4 mg, 0.009 mmol), or 7
(8.8 mg, 0.008 mmol) in H2O (2.0 mL) was treated with â-glucosidase
(5.0 mg), and the solution was stirred at 37 °C for 24 h. Workup as
above gave a residue, which was purified by HPLC [MeOH-1%
aqueous HOAc (45:55, v/v)] to give 3a (1.8 mg, 57% from 3), 4a (2.6
mg, 79% from 4), 5a (2.3 mg, 70% from 5), 6a (2.7 mg, 61% from 6),
and 7a (2.4 mg, 55% from 7), respectively.
and trans-cinnamic acid (0.7 mg, 80% from 4, 0.7 mg, 70% from 5, or
1.0 mg, 72% from 6 or 1.0 mg, 73% from 7).
Acetylation of 3a and 4b. A solution of 3a (2.3 mg, 0.006 mmol)
in pyridine (1.0 mL) was treated with Ac2O (0.8 mL), and the mixture
was stirred at room temperature for 12 h. The reaction mixture was
poured into ice-water and extracted with EtOAc. The EtOAc extract
was successively washed with 5% HCl, saturated aqueous NaHCO3,
and brine, then dried over MgSO4 powder and filtered. Removal of
the solvent under reduced pressure furnished a residue, which was
purified by HPLC [MeOH-1% aqueous HOAc (60:40, v/v)] to give
3b (2.5 mg, 83%). Through a similar procedure, 3b (2.7 mg, 87%)
was also prepared from 4b (2.1 mg, 0.006 mmol).
Compound 3a: white powder, [R]15 -17.8 (c 0.11, MeOH); UV
D
(MeOH) λmax (log ꢀ) 256 (4.14); IR (KBr) νmax 3423, 1736, 1718, 1619,
1
1509, 1458, 1248, 1090 cm-1; H NMR data, see Table 5; 13C NMR
Compound 3b: white powder, [R]23 -6.7 (c 0.14, MeOH); IR
D
(125 MHz, pyridine-d5) δC 177.6 (C-1), 81.4 (C-2), 44.2 (C-3), 173.8
(C-4), 49.4 (C-5), 24.6 (C-6), 24.2 (C-7), 24.8 (C-8), 100.4 (Glc-1),
76.0 (Glc-2), 79.2 (Glc-3), 71.0 (Glc-4), 75.1 (Glc-5), 64.5 (Glc-6),
20.8 (-OCOCH3), 171.0 (-OCOCH3); positive-ion FABMS m/z 417
[M + Na]+; HRFABMS m/z 417.1367 (calcd for C16H26O11Na [M +
Na]+, 417.1373).
(KBr) νmax 2957, 1748, 1368, 1235, 1038 cm-1; H NMR (500 MHz,
1
pyridine-d5) δ 0.91, 1.00 (3H each, both d, J ) 6.4 Hz, H3-7, 8), 1.97
(2H, m, H2-5), 1.99 (1H, m, H-6), 1.91, 2.03, 2.04, 2.04 (3H each, all
s, -OCOCH3), 3.22, 3.60 (1H each, both d, J ) 17.4 Hz, H2-3), 4.23
(1H, m, H-5′), 4.93 (1H, dd, J ) 8.2, 9.2 Hz, H-2′), [4.38 (1H, dd, J
) 2.0, 12.2 Hz), 4.53 (1H, dd, J ) 5.2, 12.2 Hz), H2-6′], 5.58 (1H, dd,
J ) 9.2, 9.8 Hz, H-4′), 6.00 (1H, dd, J ) 9.8, 9.8 Hz, H-3′), 6.06 (1H,
d, J ) 7.6 Hz, H-1′); 13C NMR (125 MHz, pyridine-d5) δC 177.6 (C-
1), 80.4 (C-2), 45.4 (C-3), 173.7 (C-4), 48.6 (C-5), 24.4 (C-6), 23.7
(C-7), 24.7 (C-8), 94.4 (Glc-1), 77.8 (Glc-2), 72.6 (Glc-3), 69.3 (Glc-
4), 73.6 (Glc-5), 62.4 (Glc-6), 20.4, 20.4, 20.5, 20.5 (-OCOCH3), 170.0,
170.0, 170.4, 170.5 (-OCOCH3); positive-ion FABMS m/z 543 [M +
Na]+; HRFABMS m/z 543.1682 (calcd for C22H32O14Na [M + Na]+,
543.1690).
Compound 4a: white powder, [R]24 -22.6 (c 0.20, MeOH); UV
D
(MeOH) λmax (log ꢀ) 218 (4.35), 276 (4.28); IR (KBr) νmax 3423, 2962,
1
1719, 1636, 1509, 1456, 1076 cm-1; H NMR data, see Table 5; 13C
NMR (125 MHz, pyridine-d5) δC 177.6 (C-1), 80.7 (C-2), 44.2 (C-3),
173.8 (C-4), 48.8 (C-5), 24.6 (C-6), 24.4 (C-7), 24.8 (C-8), 100.5 (Glc-
1), 73.8 (Glc-2), 80.7 (Glc-3), 68.8 (Glc-4), 78.2 (Glc-5), 62.0 (Glc-
6), 135.1 (Cin.-1), 128.4 (Cin.-2,6), 129.2 (Cin.-3,5), 130.6 (Cin.-4),
144.5 (Cin.-7), 119.7 (Cin.-8), 167.2 (Cin.-9); positive-ion FABMS m/z
505 [M + Na]+; HRFABMS m/z 505.1692 (calcd for C23H30O11Na
[M + Na]+, 505.1686).
Compound 5a: white powder, [R]23 -22.4 (c 0.15, MeOH); UV
Acknowledgment. Part of this work was supported by the 21st COE
Program, Academic Frontier Project, and a Grant-in Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.
D
(MeOH) λmax (log ꢀ) 217 (4.42), 278 (4.35); IR (KBr) νmax 3432, 2962,
1
1718, 1638, 1509, 1455, 1078 cm-1; H NMR data, see Table 5; 13C
NMR (125 MHz, pyridine-d5) δC 177.7 (C-1), 81.3 (C-2), 44.3 (C-3),
173.9 (C-4), 49.0 (C-5), 24.6 (C-6), 24.3 (C-7), 24.8 (C-8), 100.4 (Glc-
1), 76.1 (Glc-2), 76.8 (Glc-3), 72.4 (Glc-4), 76.2 (Glc-5), 62.1 (Glc-
6), 134.9 (Cin.-1), 128.6 (Cin.-2,6), 129.2 (Cin.-3,5), 130.7 (Cin.-4),
145.1 (Cin.-7), 119.0 (Cin.-8), 166.5 (Cin.-9); positive-ion FABMS m/z
505 [M + Na]+; HRFABMS m/z 505.1692 (calcd for C23H30O11Na
[M + Na]+, 505.1686).
Supporting Information Available: H-H COSY, H-H HO-
HAHA, and HMBC correlations of gemnosides I-VII (1-7) (Figure
S1). This information is available free of charge via the Internet at
Compound 6a: white powder, [R]27 -24.8 (c 0.11, MeOH); UV
D
References and Notes
(MeOH) λmax (log ꢀ) 217 (4.20), 277 (4.30); IR (KBr) νmax 3432, 2962,
1
1719, 1638, 1509, 1458, 1078 cm-1; H NMR data, see Table 5; 13C
(1) This paper is number 16 in our series Bioactive Constituents from
Chinese Natural Medicines. For paper number 15, see: Xie, H.;
Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M.; Tani, T.
Chem. Pharm. Bull. 2005, 53, 1416-1422.
(2) Dictionary of Traditional Chinese Medicines; Shanghai Scientific and
Technologic Press, Ed.; Shogakkan: Tokyo, 1985; pp 1185-1186.
(3) Matsuda, H.; Morikawa, T.; Xie, H.; Yoshikawa, M. Planta Med.
2004, 70, 847-855.
(4) Matsuda, H.; Morikawa, T.; Tao, J.; Ueda, K.; Yoshikawa, M. Chem.
Pharm. Bull. 2002, 50, 208-215.
(5) Morikawa, T.; Matsuda, H.; Toguchida, I.; Ueda, K.; Yoshikawa,
M. J. Nat. Prod. 2002, 65, 1468-1474.
(6) Tao, J.; Morikawa, T.; Toguchida, I.; Ando, S.; Matsuda, H.;
Yoshikawa, M. Bioorg. Med. Chem. 2002, 10, 4005-4012.
(7) Morikawa, T.; Tao, J.; Ando, S.; Matsuda, H.; Yoshikawa, M. J.
Nat. Prod. 2003, 66, 638-645.
(8) Tao, J.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. Chem.
Pharm. Bull. 2003, 51, 654-662.
NMR (125 MHz, pyridine-d5) δC 177.6 (C-1), 81.4 (C-2), 44.2 (C-3),
173.9 (C-4), 49.3 (C-5), 24.6 (C-6), 24.2 (C-7), 24.8 (C-8), 100.5 (Glc-
1), 76.0 (Glc-2), 79.3 (Glc-3), 71.1 (Glc-4), 75.2 (Glc-5), 64.7 (Glc-
6), 135.0 (Cin.-1), 128.6 (Cin.-2,6), 129.2 (Cin.-3,5), 130.5 (Cin.-4),
144.8 (Cin.-7), 119.1 (Cin.-8), 167.1 (Cin.-9); positive-ion FABMS m/z
505 [M + Na]+; HRFABMS m/z 505.1682 (calcd for C23H30O11Na
[M + Na]+, 505.1686).
Compound 7a: white powder, [R]27 -21.5 (c 0.12, MeOH); UV
D
(MeOH) λmax (log ꢀ) 217 (4.21), 276 (4.31); IR (KBr) νmax 3432, 2957,
1731, 1638, 1509, 1451, 1246, 1086 cm-1; 1H NMR data, see Table 5;
13C NMR (125 MHz, pyridine-d5) δC 177.4 (C-1), 81.8 (C-2), 44.2
(C-3), 173.7 (C-4), 49.2 (C-5), 24.7 (C-6), 24.3 (C-7), 24.7 (C-8), 100.3
(Glc-1), 73.9 (Glc-2), 80.3 (Glc-3), 69.4 (Glc-4), 74.9 (Glc-5), 64.2
(Glc-6), 20.8 (-OCOCH3), 170.1 (-OCOCH3), 135.0 (Cin.-1), 128.5
(Cin.-2,6), 129.2 (Cin.-3,5), 130.5 (Cin.-4), 144.7 (Cin.-7), 119.5 (Cin.-
8), 166.8 (Cin.-9); positive-ion FABMS m/z 547 [M + Na]+; HR-
FABMS m/z 547.1796 (calcd for C25H32O12Na [M + Na]+, 547.1791).
(9) Sun, B.; Morikawa, T.; Matsuda, H.; Tewtrakul, S.; Wu, L. J.; Harima,
S.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1464-1469.
(10) Morikawa, T.; Sun, B.; Matsuda, H.; Wu, L. J.; Harima, S.;
Yoshikawa, M. Chem. Pharm. Bull. 2004, 52, 1194-1199.
(11) Kizu, H.; Kaneko, E.; Tomimori, T. Chem. Pharm. Bull. 1999, 47,
1618-1625.
Enzymatic Hydrolysis of 1-7 with Tannase. A solution of 1 (5.7
mg, 0.012 mmol) or 2 (5.1 mg, 0.011 mmol) in H2O (2.0 mL) was
treated with tannase (3.5 mg, from Aspergillus oryzae, Wako Pure
Chemical Ind., Ltd., Osaka, Japan), and the solution was stirred at 37
°C for 24 h. After EtOH was added, the solvent was removed under
reduced pressure and the residue was purified by HPLC [MeOH-1%
aqueous HOAc (45:55, v/v)] to furnish 1b11 (2.0 mg, 85% from 1, 1.6
mg, 76% from 2). Through a similar procedure, a solution of 3 (10.1
mg, 0.011 mmol), 4 (6.1 mg, 0.006 mmol), 5 (7.0 mg, 0.007 mmol),
6 (9.8 mg, 0.010 mmol), or 7 (10.0 mg, 0.009 mmol) in H2O (2.0 mL)
was treated with tannase (5.0 mg), and the solution was stirred at 37
°C for 24 h. Workup as above gave a residue, which was purified by
HPLC [MeOH-1% aqueous HOAc (45:55 or 50:50 v/v)] to furnish
3a (2.8 mg, 66% from 3 or 2.4 mg, 65% from 7), dactylirhin C (4b,
1.5 mg, 72% from 4, 1.6 mg, 66% from 5, or 2.4 mg, 71% from 6),
(12) The 1H and 13C NMR spectra of 1-7 and their derivatives were
assigned with the aid of DEPT, DQF COSY, HMQC, HMBC, and
1H-1H and 13C-1H HOHAHA experiments.
(13) Yoshida, T.; Tanaka, K.; Chen, X.-M.; Okuda, T. Chem. Pharm. Bull.
1989, 37, 920-924.
(14) Ito, H.; Kasajima, N.; Tokuda, H.; Nishino, H.; Yoshida, T. J. Nat.
Prod. 2004, 67, 411-415.
(15) trans-Cinnamic acid was identified by comparison of the physical
data (UV, IR, 1H and 13C NMR, MS) with a commercially available
sample.
NP0581115