ORGANIC
LETTERS
2008
Vol. 10, No. 18
3945-3947
Expanding the Porphyrin π-System by
Fusion with Anthracene
Nicola K. S. Davis, Miłosz Pawlicki, and Harry L. Anderson*
Department of Chemistry, Chemistry Research Laboratory, UniVersity of Oxford,
12 Mansfield Road, Oxford OX1 3TA, U.K.
Received July 2, 2008
ABSTRACT
Synthesis of ꢀ,meso,ꢀ-anthracene triply fused and ꢀ,meso-anthracene doubly fused porphyrins has been achieved via oxidative intramolecular
ring closure of meso-(9-anthryl)porphyrins and meso-(1-anthryl)porphyrins, respectively. Fusion was only possible when the anthracene carried
electron-donating alkoxy substituents. The fused porphyrins exhibit strongly red-shifted UV-vis absorption spectra and reduced electrochemical
HOMO-LUMO gaps (relative to the unfused tetraaryl porphyrin precursor).
The synthesis of very large flat π-conjugated chromophores
and “molecular-graphenes” is an important recent develop-
ment in materials science, stimulated by the remarkable
electronicpropertiesemanatingfromthesmallHOMO-LUMO
gaps of these molecules. Examples include the hexabenzo-
coronenes developed by Mu¨llen and co-workers1 and the
edge-fused porphyrin tapes from Osuka’s group, which have
electronic absorption bands stretching far into the infrared.2
A variety of π-extended porphyrins have been synthesized
by fusing benzene,3 naphthalene,4 pyrene,5 and azulene6
across the meso- and ꢀ-positions of porphyrins. Anthracene-
fused porphyrins represent a notable absence from this family
of compounds, which is surprising in the light of the good
geometrical match between the ꢀ,meso,ꢀ-edge of a porphyrin
and the 1,9,8-edge of an anthracene.7 Here, we report the
first synthesis of triply fused (ꢀ,meso,ꢀ) and doubly fused
(ꢀ,meso) anthracene-porphyrin conjugates 1c and 2, re-
spectively. Fusion to an anthracene unit strongly perturbs
the electronic structure of the porphyrin, shifting the absorp-
tion into the near-infrared and reducing the electrochemical
HOMO-LUMO gap by making the macrocycles easier to
oxidize.
(1) (a) Wu, J.; Pisula, W.; Mu¨llen, K. Chem. ReV. 2007, 107, 718–747.
(b) Mu¨llen, K.; Rabe, J. P. Acc. Chem. Res. 2008, 41, 511–520.
(2) (a) Tsuda, A.; Furuta, H.; Osuka, A. Angew. Chem., Int. Ed. 2000,
39, 2549–2552. (b) Tsuda, A.; Osuka, A. Science 2001, 293, 79–82.
(3) (a) Barloy, L.; Dolphin, D.; Dupre´, D.; Wijesekera, T. P. J. Org.
Chem. 1994, 59, 7976–7985. (b) Richeter, S.; Jeandon, C.; Gisselbrecht,
J.-P.; Ruppert, R.; Callot, H. J. J. Am. Chem. Soc. 2002, 124, 6168–6179.
(c) Fox, S.; Boyle, R. W. Chem. Commun. 2004, 1322–1323. (d) Shen,
D.-M.; Liu, C.; Chen, Q.-Y. Chem. Commun. 2005, 4982–4984. (e) Hao,
E.; Fronczek, F. R.; Vincente, M. G. H. J. Org. Chem. 2006, 71, 1233–
1236. (f) Shen, D.-M.; Liu, C.; Chen, Q.-Y. J. Org. Chem. 2006, 71, 6508–
6511. (g) Fox, S.; Boyle, R. W. Tetrahedron 2006, 62, 10039–10054.
(4) (a) Gill, H. S.; Marmjanz, M.; Santamar´ıa, J.; Finger, I.; Scott, M. J.
Angew. Chem., Int. Ed. 2004, 43, 485–490. (b) Cammidge, A. N.; Scaife,
P. J.; Berber, G.; Hughes, D. L. Org. Lett. 2005, 7, 3413–3416. (c) Tanaka,
M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H. Chem.
Commun. 2007, 2069–2071.
Anthracene-fused porphyrins 1c and 2 were synthesized
as shown in Scheme 1. Initially, we attempted to prepare
the triply fused compound with an unsubstituted anthracene
1a. Suzuki coupling of porphyrin boronic ester 35,8 with
9-bromoanthracene 4a in the presence of Buchwald’s SPhos
(5) Yamane, O.; Sugiura, K.; Miyasaka, H.; Nakamura, K.; Fujimoto,
T.; Nakamura, K.; Kaneda, T.; Sakata, Y.; Yamashita, M. Chem. Lett. 2004,
33, 40–41.
(6) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew.
Chem., Int. Ed. 2006, 45, 3944–3947.
10.1021/ol801500b CCC: $40.75
Published on Web 08/23/2008
2008 American Chemical Society