Full Paper
2
nitrile, r.t.): δ = –173.8 (s, 1 F, BiF+), –116.7 [dm, J(P,F) = 98 Hz, 4 F,
[4]
K. O. Christe, D. A. Dixon, D. McLemore, W. W. Wilson, J. A. Sheehy, J. A.
Boatz, J. Fluorine Chem. 2000, 101, 151–153.
S. H. Strauss, Chem. Rev. 1993, 93, 927–942.
I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 2004, 43, 2066–2090; Angew.
Chem. 2004, 116, 2116.
2
1
CF2(A)], –116.1 [dm, J(P,F) = 80 Hz, 2 F, CF2(B)], –88.1 [dm, J(P,F) =
902 Hz, 2 F, PF2–], –82.4 [m, 6 F, CF3(A)], –80.7 [m, 3 F, CF3(B)], –44.7
[5]
[6]
[dm, J(P,F) = 890 Hz, 1 F, PF–] ppm. 31P NMR ([D3]acetonitrile, r.t.):
1
1
1
δ = –147.8 [dtm, J(P,F) = 902, J(P,F) = 890 Hz, 1 P, P] ppm. Single
crystals suitable for X-ray structure analysis were grown from a solu-
tion of 9 in dichloromethane at –28 °C.
[7]
a) Y. Chauvin, L. Mussmann, H. Olivier, Angew. Chem. Int. Ed. Engl. 1996,
34, 2698–2700; Angew. Chem. 1995, 107, 2941–2943; b) P. Wasserscheid,
W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772–3789; Angew. Chem. 2000,
112, 3926–3945; c) R. Hagiwara, Y. Ito, J. Fluorine Chem. 2000, 105, 221–
227; d) J. F. Brennecke, E. J. Maginn, AIChE J. 2001, 47, 2384–2389; e)
N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123–150.
A. B. A. Rupp, I. Krossing, Acc. Chem. Res. 2015, 48, 2537–2546.
T. Nakajima, H. Groult, Fluorinated Materials for Energy Conversion, Elsev-
ier, Amsterdam, 2005.
N. Ignat'ev, P. Sartori, J. Fluorine Chem. 2000, 103, 57–61.
a) U. Welz-Biermann, N. Ignatyev, M. Weiden, M. Schmidt, U. Heider, A.
Miller, H. Willner, P. Sartori (Merck Patent GmbH, Darmstadt), WO 03/
087113A1 2003; b) B. Bittner, K. Koppe, V. Bilir, W. Frank, H. Willner, N.
Ignat'ev, J. Fluorine Chem. 2015, 169, 50–60; c) B. Bittner, K. Koppe, W.
Frank, N. Ignat'ev, J. Fluorine Chem. 2016, 182, 22–27.
N. V. Ignat'ev, J. Bader, K. Koppe, B. Hoge, H. Willner, J. Fluorine Chem.
2015, 171, 36–45.
R. Bartsch, O. Stelzer, R. Schmutzler, Z. Naturforsch. B 1981, 36, 1349–
1355.
a) F. Seel, H.-J. Bassler, Z. Anorg. Allg. Chem. 1975, 418, 263–272; b) M.
Brownstein, R. Schmutzler, J. Chem. Soc., Chem. Commun. 1975, 278.
D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441;
Angew. Chem. 2015, 127, 6498.
C. B. Caputo, D. Winkelhaus, R. Dobrovetsky, L. J. Hounjet, D. W. Stephan,
Dalton Trans. 2015, 44, 12256–12264.
[Ph2BiC6H4CH2NMe2F][(C2F5)3PF3]:
A
sample of (C2F5)3PF2
solution of
(138 mg, 0.33 mmol) was condensed onto
a
Ph2BiC6H4CH2NMe2F2 (174 mg, 0.32 mmol) in 1,1,1,3,3-pentafluoro-
butane (0.5 mL) at –193 °C. The mixture was stored for 10 min at
room temperature, and all volatiles were removed under reduced
pressure. The residue was dried in vacuo for 3 h to yield the product
as a voluminous colourless foam (307 mg, 0.32 mmol, 98 %), m.p.
>150 °C. 1H NMR (dichloromethane/[D6]acetone, r.t.): δ = 2.2 (s, 6
H, CH3), 3.9 (s, 2 H, CH2), 7.5–7.8 (m, 13 H, CH), 8.1 (m, 1 H, CH)
ppm. 19F NMR (dichloromethane/[D6]acetone, r.t.): δ = –149.8 (s, 1
[8]
[9]
[10]
[11]
F, BiF+), –116.9 to –115.6 (m, 6 F, CF2), –116.1 [dm, J(P,F) = 80 Hz,
2
2 F, CF2(B)], –88.3 [dm, 1J(P,F) = 902 Hz, 2 F, PF2–], –82.1 [m, 6 F,
CF3(A)], –80.5 [m, 3 F, CF3(B)], –44.7 [dm, 1J(P,F) = 890 Hz, 1 F, PF–]
ppm.
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[Ph3Bi(NCCH3)2][(C2F5)3PF3]2 (12): A sample of (C2F5)3PF2 (69 mg,
0.15 mmol) was condensed onto a suspension of Ph3BiF2 (36 mg,
0.07 mmol) in acetonitrile (2 mL). The mixture was stirred for 10 min
at room temperature, and all volatiles were removed under reduced
pressure. The residue was dried in vacuo to yield a colourless oily
residue (105 mg, 0.07 mmol, 100 %). Recrystallization from 1,1,1,3,3-
pentafluorobutane (2 mL) yielded 12 as colourless crystals. 1H NMR
C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science 2013,
341, 1374–1377.
3
([D3]acetonitrile, r.t.): δ = 7.9 [tm, J(H,H) = 7 Hz, 3 H, CH], 8.0 [tm,
a) M. Mehta, M. H. Holthausen, I. Mallov, M. Pérez, Z.-W. Qu, S. Grimme,
D. W. Stephan, Angew. Chem. Int. Ed. 2015, 54, 8250–8254; Angew. Chem.
2015, 127, 8368; b) M. H. Holthausen, R. R. Hiranandani, D. W. Stephan,
Chem. Sci. 2015, 6, 2016–2021; c) I. Mallov, D. W. Stephan, Dalton Trans.
2016, 45, 5568–5574; d) M. Mehta, I. Garcia de la Arada, M. Perez, D.
Porwal, M. Oestreich, D. W. Stephan, Organometallics 2016, 35, 1030–
1035.
M. H. Holthausen, M. Mehta, D. W. Stephan, Angew. Chem. Int. Ed. 2014,
53, 6538–6541; Angew. Chem. 2014, 126, 6656.
J. M. Bayne, M. H. Holthausen, D. W. Stephan, Dalton Trans. 2016, 45,
5949–5957.
a) T. W. Hudnall, Y.-M. Kim, M. W. P. Bebbington, D. Bourissou, F. P. Gabbaï,
J. Am. Chem. Soc. 2008, 130, 10890–10891; b) I.-S. Ke, M. Myahkostupov,
F. N. Castellano, F. P. Gabbaï, J. Am. Chem. Soc. 2012, 134, 15309–15311;
c) H. Zhao, L. A. Leamer, F. P. Gabbaï, Dalton Trans. 2013, 42, 8164; d) B.
Pan, F. P. Gabbaï, J. Am. Chem. Soc. 2014, 136, 9564–9567.
B. Hoge, J. Bader, J. Fluorine Chem. 2007, 128, 857–861.
A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie,
de Gruyter, Berlin, 2007.
H. Suzuki, Y. Matano, Organobismuth Chemistry, Elsevier Science, Amster-
dam, 2001.
E. Riedel, R. Alsfasser, Moderne anorganische Chemie, de Gruyter, Berlin,
2007.
J. C. Haartz, D. H. McDaniel, J. Am. Chem. Soc. 1973, 95, 8562–8565.
J. W. Larson, T. B. McMahon, Inorg. Chem. 1987, 26, 4018–4023.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth-
ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-
chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.
3J(H,H) = 8 Hz, 6 H, CH], 8.0 [dm, 3J(H,H) = 9 Hz, 6 H, CH] ppm.
13C{1H} NMR ([D3]acetonitrile, r.t.): δ = 132.7 (s, CH), 132.8 (s, CH),
133.0 (s, CH), 151.0 (s, C) ppm. 19F NMR ([D3]acetonitrile, r.t.): δ =
–128.7 [d, J(P,F) = 995 Hz, 1 F, PF+], –116.7 [dm, J(P,F) = 98 Hz, 4
F, CF2(A)], –116.1 [dm, 2J(P,F) = 80 Hz, 2 F, CF2(B)], –88.1 [dm, 1J(P,F) =
902 Hz, 2 F, PF2–], –82.4 [m, 6 F, CF3(A)], –80.7 [m, 3 F, CF3(B)], –44.7
1
2
[dm, J(P,F) = 890 Hz, 1 F, PF–] ppm. 31P NMR ([D3]acetonitrile, r.t.):
1
[19]
[20]
[21]
δ = –147.8 [dtm, 1J(P,F) = 902, 1J(P,F) = 890 Hz, 1 P, P–] ppm. MS
(ESI, +): m/z (%) = 457 (100) [Ph3BiOH]+. MS (ESI, –): m/z (%): 445
(100) [(C2F5)3PF3]–.
Acknowledgments
This work was financially supported by Merck KGaA, Darmstadt,
Germany. The delivery of (C2F5)3PF2 from Merck KGaA is grate-
fully appreciated. We are grateful to Solvay GmbH (Hannover,
Germany) for providing elemental fluorine. Support by the
Deutsche Forschungsgemeinschaft (DFG), Core Facility GED@BI,
Mi477/21-1 is acknowledged, and Prof. Dr. Lothar Weber and
Dr. Julia Bader are thanked for helpful discussions. Moreover,
the authors are thankful to Dr. Julia Bader for the reactions with
elemental fluorine and to Dr. Simon Steinhauer for providing
(C2F5)3PF2 for the X-ray diffraction analysis.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
Keywords: Phosphorus · Bismuth · Fluorine · Lewis acids ·
Perfluoroaryls · Structure elucidation
[1] T. E. Thorpe, Proc. R. Soc. London 1876, 25, 122–123.
[2] R. Schmutzler, Adv. Fluorine Chem. 1965, 5, 31.
[3] T. E. Mallouk, G. L. Rosenthal, G. Mueller, R. Brusasco, N. Bartlett, Inorg.
Chem. 1984, 23, 3167–3173.
Eur. J. Inorg. Chem. 2016, 3999–4010
4009
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim