ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
In summary, we have developed a facile synthesis of
sulfoxides from alkenes and alkynes in the presence of NFSI.
Sulfoxides are useful structural moieties for construction of
natural products and other functional molecules. Our approach
provides a metal-free and concise synthesis of this class of
molecules. The substrates and reagents used in our approach
are either inexpensive or readily available with reasonable cost.
NFSI is used as a radical initiator (to initiate the sulfide
formation) and a selective oxidant (to transform sulfides to
sulfoxides). The oxygen atom in the sulfoxide products was
determined to originate from trace water in the reaction
mixture, providing a simple way for the incorporation of 18O
2015, 54, 660-663; (b) N. Kuhl, M. N.DHOoI:p1k0i.n10s3o9n/,CJ6.CWC0e8n6c3e1Dl-
Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-
10254; (c) D. D. Steiner, N. Mase, C. F. Barbas, 3rd, Angew.
Chem. Int. Ed. 2005, 44, 3706-3710; (d) T. D. Beeson, D. W. C.
MacMillan, J. Am. Chem. Soc. 2005, 127, 8826-8828.
13 (a) K. Sun, Y. Li, T. Xiong, J. Zhang, Q. Zhang, J. Am. Chem. Soc.
2011, 133, 1694-1697; (b) J. Trenner, C. Depken, T. Weber, A.
Breder, Angew. Chem. Int. Ed. 2013, 52, 8952-8956; (c) T.
Xiong, Y. Li, Y. Lv, Q. Zhang, Chem. Commun. 2010, 46, 6831-
6833.
14 (a) Y. Li, N. Lou, L. Gan, Org. Lett. 2015, 17, 524-527; (b) S. Qiu,
T. Xu, J. Zhou, Y. Guo, G. Liu, J. Am. Chem. Soc. 2010, 132
2856-2857.
,
15 K. Kaneko, T. Yoshino, S. Matsunaga, M. Kanai, Org. Lett. 2013,
15, 2502-2505.
isotope
to
sulfoxide-containing
molecules.
Further
development of related radical reactions, including catalytic
versions mediated by carbene organic catalysts, is in progress.
16 J. Sun, G. Zheng, T. Xiong, Q. Zhang, J. Zhao, Y. Li, Q. Zhang,
ACS Catal. 2016, 6, 3674-3678.
17 B. Zhang, A. Studer, Org. Lett. 2014, 16, 1790-1793.
18 H. Zhang, Y. Song, J. Zhao, J. Zhang, Q. Zhang, Angew. Chem.
Int. Ed. 2014, 53, 11079-11083.
19 G. B. Boursalian, M. Y. Ngai, K. N. Hojczyk, T. Ritter, J. Am.
Chem. Soc. 2013, 135, 13278-13281.
20 Y. Li, M. Hartmann, C. G. Daniliuc, A. Studer, Chem. Commun.
2015, 51, 5706-5709.
21 When internal alkyne 4k was used as the substrate, product
5k was isolated in low yield
Acknowledgements
We thank Dr. Yongxin Li (NTU) and Dr. Rakesh Ganguly for
assistance with X-ray structure analysis; We acknowledge
financial support by the Singapore National Research
Foundation (NRF-NRFI2016-06), the Ministry of Education of
Singapore (MOE2013-T2-2-003), Nanyang Technological
University (NTU, Singapore), China’s Ministry of Education,
National Key program for Basic Research (No. 2010CB 126105),
Thousand Talent Plan (700059143302), National Natural
Science Foundation of China (No. 21132003; No. 21472028).
Guizhou Province Returned Oversea Student Science and
Technology Activity Program, Science and Technology of
Guizhou Province, and Guizhou University.
22 P. Carloni, E. Damiani, M. Iacussi, L. Greci, P. Stipa, D. Cauzi, C.
Rizzoli, P. Sgarabotto, Tetrahedron 1995, 51, 12445-12452.
23 When
the
electron-deficient
aryl
thiol
2,3,5,6-
tetrafluorobenzenethiol was used, no desired sulfoxide was
isolated, instead sulfide 3u was isolated in 98% yield. This
might be due to the electron-deficient sulfide not being easy
to oxidize.
Notes and references
1
2
C. M. Spencer, D. Faulds, Drugs. 2000, 60, 321-329.
K. P. Garnock-Jones, S. Dhillon, L. J. Scott, CNS Drugs. 2009, 23
793-803.
,
3
4
A. Stoll, E. Seebeck, Advances in Enzymology and Related
Areas of Molecular Biology, Volume 11. 2006, 377-400.
For selected reviews on Pummer rearrangments, see (a) S. K.
Bur, A. Padwa, Chem. Rev. (Washington, DC, U. S.) 2004, 104
,
2401-2432; (b) K. S. Feldman, Tetrahedron 2006, 62, 5003-
5034; (c) L. H. Smith, S. C. Coote, H. F. Sneddon, D. J. Procter,
Angew. Chem. Int. Ed. 2010, 49, 5832-5844.
C. M. Rojas, in Molecular Rearrangements in Organic
Synthesis, John Wiley & Sons, Inc, 2015, pp. 569-626.
See the review: K. Kaczorowska, Z. Kolarska, K. Mitka, P.
Kowalski, Tetrahedron 2005, 61, 8315-8327.
5
6
7
(a) M. Xia, Z. C. Chen, Synth. Commun. 1997, 27, 1315-1320;
(b) B. Yu, C. X. Guo, C. L. Zhong, Z. F. Diao, L. N. He,
Tetrahedron Lett. 2014, 55, 1818-1821.
8
(a) M. Matteucci, G. Bhalay, M. Bradley, Org. Lett. 2003, 5,
235-237; (b) W. Dai, J. Li, B. Chen, G. Li, Y. Lv, L. Wang, S. Gao,
Org. Lett. 2013, 15, 5658-5661; (c) X. F. Wu, Tetrahedron Lett.
2012, 53, 4328-4331; (d) M. Bagherzadeh, M. M. Haghdoost,
A. Shahbazirad, J. Coord. Chem. 2012, 65, 591-601.
X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev.
(Washington, DC, U. S.). 2015, 115, 826-870.
9
10 T. Keshari, V. K. Yadav, V. P. Srivastava, L. D. S. Yadav, Green.
Chem. 2014, 16, 3986-3992.
11 H. Wang, Q. Lu, C. Qian, C. Liu, W. Liu, K. Chen, A. Lei, Angew.
Chem. Int. Ed. 2016, 55, 1094-1097.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx