Mont et al.
problems associated with stereoselectivity, Koga3 et al. proposed
the synthesis of unnatural (-)-Steganacin 7-aza-analogues.
Moreover, it was found that some of them exhibit in Vitro and
in ViVo antitumor activity even higher than the corresponding
natural lignan lactones.
structural unit as it is stable to metabolic transformations, such
as oxidation, reduction, and both basic and acidic hydrolysis.
Additionally, somewhat as a result of the increased current
interest in click chemistry, 1,2,3-triazole moieties are rising as
potent pharmacophores themselves.11 We now wish to report a
strategy for the synthesis of aza-analogues allowing the intro-
duction of five points of diversity in the system.
There have been a plethora of reported protocols on the synthesis
of these lignan lactones after the first total synthesis of (()-
Steganacin published in 1976 by Kende4 and of (()-Steganone
by Raphael.5 Since the generation of the biaryl backbone of the
title molecules was deemed to be the key step, several coupling
procedures have been investigated for this purpose, such as
nonphenolic oxidative intramolecular coupling using either
VOF3,4,6c,i,m,n,9 thallium,6l ruthenium,7a,c,d rhenium,7b manganese,7b
or cerium7b reagents. However, this synthetic approach is highly
sensitive to the nature of the substituents on both aromatic rings,
as biaryl formation does not occur in the absence of electron-rich
groups. Other strategies like photocyclization,5,6a,b,n,p SNAr
reaction,6a or Ullmann coupling2c,6c,e-h,j generally suffer from lower
yields as well as sensitive conditions and longer reaction times,
and are often associated with the problem of homodimerization.8
Even though the Suzuki-Miyaura reaction has been demonstrated
to be a viable method for the selective generation of the biaryl
skeleton of these compounds,6r,t,u,9b this mild and efficient cross-
coupling protocol has never been investigated for the generation
of more potent aza-analogues whose, synthesis has hardly been
explored.3a,b,10a,b
Results and Discussion
The synthesis of the proposed aza-analogues is based on
a Suzuki-Miyaura cross-coupling reaction to generate the
biaryl axis,9b,12 followed by an A3-coupling reaction13 and
subsequent ring closure applying “click chemistry”.14 These
three key reactions are performed upon microwave irradiation
(Scheme 1).
According to our previous investigations,10c our sequence
started from the commercially available methoxy-substituted
benzyl alcohols 1a (R1 ) H) and 1b (R1 ) OMe) which were
regioselectively brominated with NBS in CCl4 affording the
corresponding 2-bromoalcohols 2a,b in 70% and 74% yield,
respectively (Scheme 2).15 Subsequently, the alcohols 2a,b were
(10) (a) Joncour, A.; Decor, A.; Liu, J. M.; Dau, M.; Baudoin, O. Chem.
Eur. J. 2007, 13, 5450–5465. (b) Imperio, D.; Pirali, T.; Galli, U.; Pagliai, F.;
Cafici, L.; Canonico, P. L.; Sorba, G.; Genazzani, A. A.; Tron, G. C. Bioorg.
Med. Chem. 2007, 15, 6748–6757. (c) Beryozkina, T.; Appukkuttan, P.; Mont,
N.; Van der Eycken, E. Org. Lett. 2006, 8, 487–490.
(11) (a) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.;
Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053–
1057. (b) Olesen, P. H.; Sorensen, A. R.; Urso, B.; Kurtzhals, P.; Bowler, A. N.;
Ehrbar, U.; Hansen, B. F. J. Med. Chem. 2003, 46, 3333–3341. (c) Biagi, G.;
Calderone, V.; Giorgi, I.; Livi, O.; Martinotti, E.; Martelli, A.; Nardi, A. Farmaco
2004, 59, 397–404. (d) Lebsack, A. D.; Gunzner, J.; Wang, B. W.; Pracitto, R.;
Schaffhauser, H.; Santini, A.; Aiyar, J.; Bezverkov, R.; Munoz, B.; Liu, W. S.;
Venkatraman, S. Bioorg. Med. Chem. Lett. 2004, 14, 2463–2467. (e) Su, C.;
Lee, L. X.; Yu, S. H.; Shih, Y. K.; Su, J. C.; Li, F. J.; Lai, C. Liq. Cryst. 2004,
31, 745–749. (f) Zhu, X. M.; Schmidt, R. R. J. Org. Chem. 2004, 69, 1081–
1085.
We have recently reported an efficient, microwave-assisted
protocol for the synthesis of hitherto unknown triazole analogues
of (-)-Steganacin and (-)-Steganone, based on a combination
of Suzuki-Miyaura cross-coupling and Huisgen 1,3-dipolar
cycloaddition reaction.10c Although the 1,2,3-triazole moiety
does not occur in natural products, this might be an interesting
(3) (a) Tomioka, K.; Ishiguro, T.; Iitaka, Y.; Koga, K. Tetrahedron Lett.
1989, 30, 2949–2952. (b) Kubota, Y.; Kawasaki, H.; Tomioka, K.; Koga, K.
Tetrahedron 1993, 49, 3081–3090.
(12) (a) Miyaura, N.; A.; Suzuki, A. Chem. ReV 1995, 95, 2457–2483. (b)
Diederich, F.; Stang, P. J. In Metal-Catalyzed Cross-coupling Reactions; Wiley-
VCH: Weinheim, Germany, 1998; p 517. (c) Suzuki, A. J. Organomet. Chem.
1999, 576, 147–168. (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002,
58, 9633–9695.
(4) Kende, A. S.; Liebeskind, L. S. J. Am. Chem. Soc. 1976, 98, 267–268.
(5) Hughes, L. R.; Raphael, R. A. Tetrahedron Lett. 1976, 1543–1546.
(6) (a) Becker, D.; Hughes, L. R.; Raphael, R. A. J. Chem. Soc., Perkin
Trans. 1 1977, 1674–1681. (b) Krow, G. R.; Damodaran, K. M.; Michener, E.;
Wolf, R.; Guare, J. J. Org. Chem. 1978, 43, 3950–3953. (c) Ziegler, F. E.; Fowler,
K. W.; Sinha, N. D. Tetrahedron Lett. 1978, 19, 2767–2770. (d) Ziegler, F. E.;
Schwartz, J. A. J. Org. Chem. 1978, 43, 985–991. (e) Brown, E.; Dhal, R.; Robin,
J. P. Tetrahedron Lett. 1979, 20, 733–736. (f) Larson, E. R.; Raphael, R. A.
Tetrahedron Lett. 1979, 20, 5041–5042. (g) Ziegler, F. E.; Chliwner, I.; Fowler,
K. W.; Kanfer, S. J.; Kuo, S. J.; Sinha, N. D. J. Am. Chem. Soc. 1980, 102,
790–798. (h) Robin, J. P.; Gringore, O.; Brown, E. Tetrahedron Lett. 1980, 21,
2709–2712. (i) Tomioka, K.; Ishiguro, T.; Koga, K. Tetrahedron Lett. 1980, 21,
2973–2976. (j) Mervic, M.; Ben-David, Y.; Ghera, E. Tetrahedron Lett. 1981,
22, 5091–5094. (k) Larson, E. R.; Raphael, R. A. J. Chem. Soc., Perkin Trans.
1 1982, 52, 1–525. (l) Magnus, P.; Schultz, J.; Gallagher, T. J. Chem. Soc.,
Chem. Commun. 1984, 1179–1180. (m) Tomioka, K.; Ishiguro, T.; Iitaka, Y.;
Koga, K. Tetrahedron 1984, 40, 1303–1312. (n) Magnus, P.; Schultz, J.;
Gallagher, T. J. Am. Chem. Soc. 1985, 107, 4984–4988. (o) Meyers, A. I.; Flisak,
J. R.; Aitken, R. A. J. Am. Chem. Soc. 1987, 109, 5446–5452. (p) Narasimhan,
N. S.; Aidhen, I. S. Tetrahedron Lett. 1988, 29, 2987–2988. (q) Aidhen, I. S.;
Narasimhan, N. S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem 1993,
32, 211–221. (r) Uemura, M.; Daimon, A.; Hayashi, Y. J. Chem. Soc., Chem.
Commun. 1995, 1943–1944. (s) Monovich, L. G.; Le Huerou, Y.; Ronn, M.;
Molander, G. A. J. Am. Chem. Soc. 2000, 122, 52–57. (t) Abe, H.; Takeda, S.;
Fujita, T.; Nishioka, K.; Takeuchi, Y.; Harayama, T. Tetrahedron Lett. 2004,
45, 2327–2329. (u) Joncour, A.; Decor, A.; Thoret, S.; Chiaroni, A.; Baudoin,
O. Angew. Chem., Int. Ed. 2006, 45, 4149–4152.
(13) (a) Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133–
6135. (b) Sato, Y.; Nishimata, T.; Mori, M. Heterocycles 1997, 44, 443–457.
(c) Sakaguchi, S.; Kubo, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 2534–
2536. (d) Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2002, 124, 5638–5639. (e)
SyedaHuma, H. Z.; Halder, R.; Singh Kalra, S.; Das, J.; Iqbal, J. Tetrahedron
Lett. 2002, 43, 6485–6488. (f) Li, C. J.; Wei, C. M. Chem. Commun. 2002,
268–269. (g) Gommermann, N.; Koradin, K.; Polborn, K.; Knochel, P. Angew.
Chem., Int. Ed. 2003, 42, 5763–5766. (h) Leadbeater, N. E.; Torenius, H. M.;
Tye, H. Mol. DiVersity 2003, 7, 135–144. (i) Wei, C. M.; Li, C. J. J. Am. Chem.
Soc. 2003, 125, 9584–9585. (j) Wei, C. M.; Li, Z. G.; Li, C. J. Synlett 2004,
1472–1483. (k) Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.; Fan, C. A. Org.
Lett. 2004, 6, 1001–1003. (l) Ju, Y.; Li, C. J.; Varma, R. S. QSAR Comb. Sc.
2004, 23, 891–894. (m) Yadav, J. S.; Reddy, B. V. S.; Naveenkumar, V.; Rao,
R. S.; Nagaiah, K. New J. Chem. 2004, 28, 335–337. (n) Sakaguchi, S.; Mizuta,
T.; Furuwan, M.; Kubo, T.; Ishii, Y. Chem. Commun. 2004, 1638–1639. (o) Li,
Z. G.; Wei, C. M.; Chen, L.; Varma, R. S.; Li, C. J. Tetrahedron Lett. 2004, 45,
2443–2446. (p) Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B.
Tetrahedron Lett. 2004, 45, 7319–7321. (q) Saidi, M. R.; Nazari, M. Monatsh.
Chem. 2004, 135, 309–312. (r) Yao, X. Q.; Li, C. J. Org. Lett. 2005, 7, 4395–
4398. (s) Gommermann, N.; Knochel, P. Synlett 2005, 2799–2801. (t) Park, S. B.;
Alper, H. Chem. Commun. (Cambridge, U. K.) 2005, 1315–1317. (u) Li, P. H.;
Wang, L. Chin. J. Chem. 2005, 23, 1076–1080. (v) Trost, B. M.; Rudd, M. T.
J. Am. Chem. Soc. 2005, 127, 4763–4776. (w) Bisai, A.; Singh, V. K. Org. Lett.
2006, 8, 2405–2408. (x) Gommermann, N.; Knochel, P. Chem. Eur. J. 2006,
12, 4380–4392. (y) Wei, C. M.; Mague, J. T.; Li, C. J. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5749–5754.
(7) (a) Dhal, R.; Landais, Y.; Lebrun, A.; Lenain, V.; Robin, J. P. Tetrahedron
1994, 50, 1153–1164. (b) Planchenault, D.; Dhal, R.; Robin, J. P. Tetrahedron
1995, 51, 1395–1404. (c) Ward, R. S.; Hughes, D. D. Tetrahedron 2001, 57,
2057–2064. (d) Ward, R. S.; Hughes, D. D. Tetrahedron 2001, 57, 4015–4022.
(8) Bradley, A.; Motherwell, W. B.; Ujjainwalla, F. Chem. Commun. 1999,
917–918.
(9) (a) Kamikawa, K.; Watanabe, T.; Daimon, A.; Uemura, M. Tetrahedron
2000, 56, 2325–2337. (b) Appukkuttan, P.; Orts, A. B.; Chandran, P. R.; Goeman,
J. L.; Van der Eycken, J.; Dehaen, W.; Van der Eycken, E. Eur. J. Org. Chem.
2004, 3277–3285.
(14) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021. (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057–3064. (c) Kolb, H. C.; Sharpless, K. B. Drug DiscoVery
Today 2003, 8, 1128–1137. (d) Lee, L. V.; Mitchell, M. L.; Huang, S. J.; Fokin,
V. V.; Sharpless, K. B.; Wong, C. H. J. Am. Chem. Soc. 2003, 125, 9588–9589.
(e) Punna, S.; Diaz, D. D.; Li, C.; Sharpless, K. B.; Fokin, V. V.; Finn, M. G.
Polym. Prepr. (Am. Chem. Soc., DiV. Polym. Chem.) 2004, 45, 778–779.
7510 J. Org. Chem. Vol. 73, No. 19, 2008