Similar pyrazinone scaffolds have been used successfully
in tryptase inhibitors,4 thrombin inhibitors,5-7 and caspase-3
inhibitors.8
Scheme 2. General Synthesis of Pyrazinone Derivative 2
These pyrazinones have very interesting structural similarity
with Merck’s L-870810 integrase inhibitor (3)9,10 as shown in
Figure 1.
To synthesize this pyrazinone scaffold 2, we wanted to
use 3,5-dihalo-2(1H)-pyrazinones 1 as the starting point since
this synthesis should allow us to introduce diverse substit-
uents at different positions of the scaffold 2. A variety of R1
and R6 substituents of scaffold 2 could be introduced while
synthesizing pyrazinone 1 (Scheme 1). Moreover, the ap-
Scheme 1. Retrosynthesis of Pyrazinone Scaffold 2
Thus, it was necessary to develop a new and more efficient
method which would provide us with carboxamidepyrazinone
scaffold 2.
In the case of 3,5-dihalo-2(1H)-pyrazinones 1, we could
take advantage of the highly electrophilic C3 carbon of
pyrazinone 1. Thus, we envisioned the insertion of carboxa-
mide at C3 by using the “umpolung concept” which could
lead us to generate pyrazinone scaffold 2 directly from
dihalopyrazinone 1. This could be achieved by applying the
well-known Stork method.11
Our first attempt was the use of N,N-disubstituted ami-
noacetonitrile derivative 7 as a synthon for amides of general
composition 8 (Figure 2). The two-step process12consisting
propriate halogen atom at position 5 could allow us to
introduce different substituents by using palladium-catalyzed
reactions,3 and this synthetic route could be very useful to
synthesize a focused library of druglike compounds.
A general way to get this carboxamide functionality at
position 3 of pyrazinones 1 is the insertion of a cyano group
followed by hydrolysis of the cyano group and the coupling
of an amine with the resulting carboxylic acid (Scheme 2).
The hydrolysis of the cyano group to the pyrazinone
carboxylic acid 6, however, is a very low yielding synthetic
step in our experience.
Figure 2. N,N-Disubstituted aminoacetonitrile derivative 7 as a
synthon for amide of general composition 8.
of a base-mediated alkylation of the methylene moiety by
SNAr (addition-elimination) at the highly electrophilic
position C-3 of dihalo 2(1H)-pyrazinone and subsequent
oxidation could result in the generation of the desired
carboxamidopyrazinone 2 after elimination of HCN from an
intermediate cyanohydrine generated from 9 (Scheme 3).13
During the optimization of the method to provide a general
reaction procedure, KHMDS was found to be a suitable base
and -78 °C was found to be the temperature of choice that
offered a clean reaction as compared to NaH or NaHMDS
at room temperature or at lower temperature (0 to -78 °C).
When the oxidant Na2O2 is used, the product 13a was
isolated in 16% yield only (Table 1).
(7) South, M. S.; Case, B. L.; Wood, R. S.; Jones, D. E.; Hayes, M. J.;
Girard, T. J.; Lachance, R. M.; Nicholson, N. S.; Clare, M.; Stevens, A. M.;
Stegeman, R. A.; Stallings, W. C.; Kurumbail, R. G.; Parlow, J. J. Bioorg.
Med. Chem. Lett. 2003, 13, 2319–2325.
(8) Han, Y.; Giroux, A.; Colucci, J.; Bayly, C. I.; McKay, D. J.; Roy,
S.; Xanthoudakis, S.; Vaillancourt, J.; Rasper, D. M.; Tam, J.; Tawa, P.;
Nicholson, D. W.; Zamboni, R. J. Bioorg. Med. Chem. Lett. 2005, 15, 1173–
1180.
(9) Egbertson, M. S.; Moritz, H. M.; Melamed, J. Y.; Han, W.; Perlow,
D. S.; Kuo, M. S.; Embrey, M.; Vacca, J. P.; Zrada, M. M.; Cortes, A. R.;
Wallace, A.; Leonard, Y.; Hazuda, D. J.; Miller, M. D.; Felock, P. J.;
Stillmock, K. A.; Witmer, M. V.; Schleif, W.; Gabryelski, L. J.; Moyer,
G.; Ellis, J. D.; Jin, L.; Xu, W.; Braun, M. P.; Kassahun, K.; Tsou, N. N.;
Young, S. D. Bioorg. Med. Chem. Lett. 2007, 17, 1392–1398.
(10) Hazuda, D. J.; Anthony, N. J.; Gomez, R. P.; Jolly, S. M.; Wai,
J. S.; Zhuang, L.; Fisher, T. E.; Embrey, M.; Guare, J. P., Jr.; Egbertson,
M. S.; Vacca, J. P.; Huff, J. R.; Felock, P. J.; Witmer, M. V.; Stillmock,
K. A.; Danovich, R.; Grobler, J.; Miller, M. D.; Espeseth, A. S.; Jin, L.;
Chen, I. W.; Lin, J. H.; Kassahun, K.; Ellis, J. D.; Wong, B. K.; Xu, W.;
Pearson, P. G.; Schleif, W. A.; Cortese, R.; Emini, E.; Summa, V.;
Holloway, M. K.; Young, S. D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
11233–11238.
(11) Stork, G.; Maldonado, L. J. Am. Chem. Soc. 1971, 93, 5286.
(12) Zhang, Z.; Yin, Z.; Kadow, J. F.; Meanwell, N. A.; Wang, T. J.
Org. Chem. 2004, 69, 1360–1363.
4474
Org. Lett., Vol. 10, No. 20, 2008