5696
H.-Y. Lee et al. / Tetrahedron Letters 49 (2008) 5693–5696
11. Reaction condition and spectral data of 7a and 8a, reaction condition: To a stirred
solution of 6a (78 mg, 0.189 mmol) in THF (18 mL) was added KHMDS (454
propynyl iodonium salts and the stereoselectivity of [2+3] cycload-
dition reaction of TMM diyls with olefins are sensitive to the struc-
ture of the substrates. The compatibility of the current synthetic
methodology with relatively acidic functional groups widened
the scope of substrates, and could be applicable to the preparation
of various complex structures.
lL
of 0.5 M solution in toluene, 0.227 mmol) at 0 °C. After being stirred for 30 min,
the reaction mixture was allowed to warm to room temperature and a solution
of 1-propynyl(phenyl)iodonium triflate17 (97 mg, 0.246 mmol) in THF (18 mL)
was added for 40 min via cannula. The reaction mixture was stirred for 4 h. The
resulting product was quenched with saturated NH4Cl solution (10 mL) and
extracted with EtOAc (5 mL ꢀ 3). The organic layers were combined and dried
over MgSO4. The filtrate was concentrated in vacuo, and the residue was
purified by flash column chromatography on silica gel (EtOAc/Benzene = 1:30)
to yield 36 mg (0.08 mmol, 42%) of 7a and 9 mg (0.02 mmol, 11%) of 8a,
spectral data, Compound 7a: 1H NMR (400 MHz, CDCl3): d 4.20–4.11 (8H, m),
3.19 (1H, m), 3.03–2.96 (1H, m), 2.94–2.85 (1H, m), 2.82–2.77 (1H, dd, J = 12.6,
7.0 Hz), 2.66–2.60 (1H, ddd, J = 13.0, 8.8, 2.2 Hz), 2.50–2.44 (1H, ddd, J = 12.9,
8.1, 2.1 Hz), 1.84–1.75 (2H, m), 1.74–1.73 (3H, d, J = 2.4 Hz), 1.70–1.67 (1H, m),
1.62–1.57 (1H, m), 1.25–1.18 (13H, m).; 13C NMR (100 MHz, CDCl3): d 171.7,
171.4, 171.2, 170.7, 155.1, 125.0, 73.4, 62.5, 61.3, 61.3, 61.1, 61.0, 47.0, 45.2,
40.6, 40.3, 39.5, 38.8, 36.7, 14.1, 14.1, 14.0, 14.0, 12.2.; 8a: 1H NMR (400 MHz,
CDCl3): d 5.07 (1H, d, J = 1.5 Hz), 4.20–4.10 (8H, m), 3.39–3.35 (1H, ddd,
J = 16.4, 4.0, 1.5 Hz), 3.10–2.97 (2H, m), 2.86–2.81 (1H, ddd, J = 16.4, 3.1,
1.5 Hz), 2.61–2.56 (1H, ddd, J = 12.8, 8.0, 1.5 Hz), 2.53–2.48 (1H, ddd, J = 13.2,
8.0, 1.5 Hz), 2.00–1.95 (1H, dd, J = 12.9, 9.0 Hz), 1.95–1.90 (1H, dd, J = 13.1,
8.5 Hz), 1.72–1.71 (2H, d, J = 7.8 Hz), 1.26–1.17 (12H, m), 1.08 (3H, s).; 13C NMR
(100 MHz, CDCl3): d 172.1, 171.2, 170.9, 170.7, 158.5, 113.4, 67.2, 64.4, 64.0,
61.3, 61.2, 61.0, 60.9, 46.4, 43.2, 40.7, 39.7, 39.3, 38.0, 22.4, 14.1, 14.1, 14.1,
14.1.
Acknowledgments
We acknowledge financial support from KOSEF through the
center of molecular design & synthesis. We are grateful to Profes-
sor Kimoon Kim at POSTECH for X-ray crystallographic data collec-
tion for structure 10c.
References and notes
1. (a) Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jorgensen, K. A.,
Eds.; Wiley-VCH Verlag GmbH: Weinheim, 2001; (b) Nicolaou, K. C.; Snyder, S.
A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668–
1698; (c) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon:
Oxford, UK, 1990.
2. (a) Yamago, S.; Nakamura, E. In Organic Reactions; Overman, L. E., Ed.; John
Wiley & Sons: New York, 2002; Vol. 61, pp 1–217; (b) Little, R. D. Transition
Metal Mediated Cycloadditions. In Comprehensive Organic Reactions; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp 239–270; (c)
Chan, D. M. T. Transition Metal Mediated Cycloadditions. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 5, pp 271–314.
12. Little, R. D. Chem. Rev. 1996, 96, 93–114.
13. Lee, H.-Y.; Kim, W.-Y.; Lee, S. Tetrahedron Lett. 2007, 48, 1407–1410.
14. Ochiai, M.; Ito, T.; Takaoka, Y.; Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J.
Chem. Soc., Chem. Commun. 1990, 118–119.
15. Crystal data for 10c:
C
16H20O5, FW = 292.32, monoclinic, a = 6.1734(3) Å,
= 90°, b = 90.484(2)°, = 90°, V =
b = 19.5389(9) Å, c = 12.2444(6) Å,
a
c
1476.88(12) A3, Z = 4, R = 0.1221, spectral data of 10c: 1H NMR (400 MHz,
CDCl3): d 3.94–3.87 (2H, m), 3.57–3.47 (3H, m), 3.15–3.08 (2H, m), 2.61–2.56
(1H, dd, J = 12.6, 7.6 Hz), 2.16–2.11 (1H, dd, J = 12.6, 7.4 Hz), 1.80–1.75 (1H, dd,
J = 12.4, 7.6 Hz), 1.73 (3H, s), 1.71 (3H, s), 1.57–1.56 (3H, d, J = 2.4 Hz), 1.51–
1.43 (1H, m).; 13C NMR (100 MHz, CDCl3): d 170.2, 169.2, 156.4, 125.4, 104.8,
75.2, 73.1, 69.1, 48.7, 48.6, 42.3, 41.1, 36.4, 29.7, 28.2, 11.4.
3. Berson, J. A. Acc. Chem. Res. 1978, 11, 446–453.
4. Allan, A. K.; Law Carroll, G.; Little, R. D. Eur. J. Org. Chem. 1998, 1–12.
5. Lee, H.-Y.; Kim, Y. J. Am. Chem. Soc. 2003, 125, 10156–10157.
6. (a) Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Shiro, M.; Fujita, E. J. Am.
Chem. Soc. 1986, 108, 8281–8283; (b) Stang, P. J. Angew. Chem., Int. Ed. 1992, 31,
274–285.
16. Reaction conditions for the cyclization are the same as the reaction condition
of 6a in Ref. 11 and all the isolated products showed satisfactory spectroscopic
data and purity.
17. Bachi, M. D.; Bar-Ner, N.; Crittell, C. M.; Stang, P. J.; Williamson, B. L. J. Org.
Chem. 1991, 56, 3912.
7. Lee, H.-Y.; Lee, Y.-H. Synlett 2001, 1656–1658.
8. Feldman, K. S.; Mareska, D. A. Tetrahedron Lett. 1998, 39, 4781–4784.
9. Lee, H.-Y.; Kim, Y.; Lee, Y.-H.; Kim, B. G. Tetrahedron Lett. 2001, 7431–7434.
10. The competing reaction between C–H insertion and intramolecular
cyclopropanation reaction produced insertion reaction as the major product
and did not show any cyclopropanation derived product
Ph
IPh
O
O
+
O
O
O
O
O
70%
O
O
OBn
.