C O M M U N I C A T I O N S
together, these results indicate that the hit compound SZ4TA2
identified through the kinetic TGS screening is indeed a respectable
ligand of the biological target, which underscores the utility of
kinetic TGS as a valuable approach to PPIM discovery and
optimization.
In a proof-of-concept study, we have shown for the first time
that kinetic TGS can be applied not only for enzymatic targets but
also for protein-protein interaction disruption by using the recently
reported amidation reaction between sulfonyl azides and thio acids.
In the future, we will study in great detail the kinetics and
mechanism of the kinetic TGS approach. Additionally, we will
investigate the scope and limitations of the herein reported lead
discovery and optimization method targeting other protein-protein
interactions related to various diseases.
Figure 1. Hit identification of acylsulfonamide SZ4TA2 by LC/MS-SIM.
(A) Incubation of SZ4 and TA2 in buffer without Bcl-XL. (B) Bcl-XL-
templated reaction after 6 h of incubation. (C) Synthesized SZ4TA2 as
reference. (D) Suppression of Bcl-XL-templated reaction by Bak BH3
peptide. (E) Bcl-XL-templated incubation in presence of mutant Bak BH3
peptide. (F) Suppression of Bcl-XL-templated reaction by Bim BH3 peptide.
(G) Bcl-XL-templated incubation in presence of mutant Bim BH3 peptide.
Acknowledgment. We are grateful to the James and Esther King
Biomedical Research Program (NIR Grant 07KN-08 to R.M.) and
the National Cancer Institute, National Institutes of Health (Grant
P01CA118210 to H-G.W.) for financial support.
Supporting Information Available: Synthetic procedures, LC/MS-
SIM traces, and determination of IC50 values. This material is available
Bcl-XL templates the formation of the characterized hit compound
(Figure 1A-C).
To assess whether the Bcl-XL-templated reactions occur at the
BH3 binding pocket or randomly elsewhere on the protein surface,
control experiments were performed in which the reactive fragments
SZ4 and TA2 were incubated with Bcl-XL and various proapoptotic
BH3-containing peptides.15 Bak BH3 and Bim BH3 peptides bind
to Bcl-XL through their BH3 domain and theoretically compete with
the reactive building blocks for binding during these incubations.
In comparison, their mutants exhibit lower affinity toward Bcl-XL
and hence do not suppress the Bcl-XL-templated acylsulfonamide
formation to the same extent. Comparison of the LC/MS-SIM traces
(Figure 1D-G) between the Bcl-XL incubations with and without
these peptides suggests that the generation of SZ4TA2 occurs at
the BH3 binding site on Bcl-XL.
References
(1) (a) Arkin, M. R.; Wells, J. A. Nat. ReV. Drug DiscoV. 2004, 3, 301–317.
(b) Berg, T. Angew. Chem., Int. Ed. 2003, 42, 2462–2481.
(2) (a) Clackson, T.; Wells, J. A. Science 1995, 267, 383–386. (b) Arkin, M.
Curr. Opin. Chem. Biol. 2005, 9, 317–324. (c) Bogan, A. A.; Thorn, K. S.
J. Mol. Biol. 1998, 280, 1–9. (d) DeLano, W. L. Curr. Opin. Struct. Biol.
2002, 12, 14–20.
(3) (a) Preissner, R.; Goede, A.; Frommel, C. J. Mol. Biol. 1998, 280, 535–
550. (b) Mccoy, A. J.; Epa, V. C.; Colman, P. M. J. Mol. Biol. 1997, 268,
570–584. (c) Lo Conte, L.; Chothia, C.; Janin, J. J. Mol. Biol. 1999, 285,
2177–2198. (d) Nooren, I. M. A.; Thornton, J. M. J. Mol. Biol. 2003, 325,
991–1018.
(4) (a) DeLano, W. L.; Ultsch, M. H.; de Vos, A. M.; Wells, J. A. Science
2000, 287, 1279–1283. (b) Wodak, S. J.; Janin, J. AdV. Protein Chem. 2003,
61, 9–73.
(5) Walensky, L D. Cell Death Differ. 2006, 13, 1339–1350.
(6) (a) Danial, N. N.; Korsmeyer, S. J. Cell 2004, 116, 205–219. (b) Huang,
D. C. S.; Strasser, A. Cell 2000, 103, 839–842. (c) Kelekar, A.; Thompson,
C. B. Trends Cell Biol. 1998, 8, 324–330.
(7) (a) Oltersdorf, T. Nature 2005, 435, 677–681. (b) Wendt, M. D. J. Med.
Chem. 2006, 49, 1165–1181. (c) Park, C. M.; Oie, T.; Petros, A. M.; Zhang,
H.; Nimmer, P. M.; Henry, R. F.; Elmore, S. W. J. Am. Chem. Soc. 2006,
128, 16206–16212. (d) Petros, A. M. J. Med. Chem. 2006, 49, 656–663.
(e) Wendt, M. D. J. Med. Chem. 2006, 49, 1165–1181. (f) Bruncko, M.
J. Med. Chem. 2007, 50, 641–662. (g) Tse, C. Cancer Res. 2008, 68, 3421–
3428.
(8) (a) Huc, I.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2106–
2110. (b) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.;
Sanders, J. K. M.; Otto, S. Chem. ReV. 2006, 106, 3652–3711.
(9) (a) Nicolaou, K. C.; Hughes, R.; Cho, S. Y.; Winssinger, N.; Smethurst,
C.; Labischinski, H.; Endermann, R. Angew. Chem., Int. Ed. 2000, 39, 3823–
3828. (b) Nicolaou, K. C.; Hughes, R.; Cho, S. Y.; Winssinger, N.;
Labischinski, H.; Endermann, R. Chem.sEur. J. 2001, 7, 3824–3843.
(10) (a) Inglese, J.; Benkovic, S. J. Tetrahedron 1991, 47, 2351–64. (b) Nguyen,
R.; Huc, I. Angew. Chem., Int. Ed. 2001, 40, 1774–1776. (c) Sharpless,
K. B.; Manetsch, R. Exp. Opin. Drug DiscoVery 2006, 1, 525–538.
(11) (a) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.;
Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41,
1053–1057. (b) Manetsch, R.; Krasinski, A.; Radic, Z.; Raushel, J.; Taylor,
P.; Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809–
12818. (c) Krasinski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.;
Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2005, 127, 6686–6692.
(12) (a) Mocharla, V. P.; Colasson, B.; Lee, L. V.; Roeper, S.; Sharpless, K. B.;
Wong, C.-H.; Kolb, H. C. Angew. Chem., Int. Ed. 2005, 44, 116–120. (b)
Wang, J.; Sui, G.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.;
Tseng, H. Angew. Chem., Int. Ed. 2006, 45, 5276–5281.
An advantage of kinetic TGS approaches is the increased
throughput screening capability with incubations containing more
than two reactive building blocks. Experiments were undertaken
to test whether our amidation kinetic TGS screening can be
performed as incubations containing more than two complimentary
reacting building blocks. Best results were obtained with reactions
containing one thio acid and six sulfonyl azides.15 Samples of Bcl-
XL with all 9 reactive building blocks at the same time failed at
giving clear results. Although the multicomponent screening of the
entire library failed, these experiments prove that the amidation
kinetic TGS approach can be tested in an enhanced screening
throughput.
To investigate the ability of the hit compound to disrupt the
interaction between Bcl-XL and Bak, we performed the well-
established fluorescence polarization competition assay using Bcl-
XL and fluorescein-labeled Bak BH3 peptide.16 Abbott laboratories
reported that SZ4TA2 is a good Bcl-XL PPIM with a Ki constant
of 19 nM, as determined by a competitive fluorescence polarization
assay using a fluorescein-labeled Bad-BH3 peptide.7e Consistently,
compound SZ4TA2 is validated again as a Bcl-XL inhibitor with
an IC50 constant of 78.8 nM by our assay.15 To compare the activity
of acylsulfonamides not assembled by Bcl-XL with that of the hit
compound SZ4TA2, compounds SZ2TA1, SZ2TA2, SZ2TA3,
SZ4TA1, SZ5TA1, and SZ5TA2 have been synthesized and tested
for their binding to Bcl-XL. The IC50 values of these compounds
have been determined to be 5 µM or higher.15 Finally, we also
determined the IC50 constants for the corresponding reactive
building blocks SZ4 and TA2 to be higher than 100 µM. Taken
(13) (a) Whiting, M.; Muldoon, J.; Lin, Y.-C.; Silverman, S. M.; Lindstrom,
W.; Olson, A. J.; Kolb, H. C.; Finn, M. G.; Sharpless, K. B.; Elder, J. H.;
Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 1435–1439.
(14) (a) Shuangguan, N.; Katukojvala, S.; Greenberg, R.; William, L. J. J. Am.
Chem. Soc. 2003, 125, 7754–7755. (b) Kolakowski, R. V.; Shuangguan,
N.; Sauers, R. R.; Greenberg, R.; William, L. J. J. Am. Chem. Soc. 2006,
128, 5695–5702.
(15) Please see Supporting Information for details.
(16) Yin, H.; Lee, G.; Sedey, K. A.; Rodriguez, J. M.; Wang, H.-G.; Sebti,
S. M.; Hamilton, A. D. J. Am. Chem. Soc. 2005, 127, 5463–5468.
JA802683U
9
J. AM. CHEM. SOC. VOL. 130, NO. 42, 2008 13821