solid (394 mg): mp 293.0–294.0 1C; 1H NMR (300 MHz,
CDCl3, d, ppm, TMS) 5.49 (s, 1H), 6.96 (dt, J = 1.3, 7.6 Hz,
3H), 7.07 (dt, J = 1.2, 7.4 Hz, 3H), 7.32 (d, J = 9.1 Hz, 2H),
7.41–7.47 (m, 6H), 7.95 (d, J = 9.1 Hz, 2H); 13C NMR (75.5
MHz, CDCl3, d, ppm, TMS) 54.1, 62.2, 123.4 (2C), 123.7 (3C),
124.3 (3C), 125.1 (3C), 126.2 (3C), 130.3 (2J(Se,C) = 16.2 Hz,
2C), 141.3, 143.0 (3C), 145.2 (3C), 145.7; 77Se NMR (57.3
MHz, CDCl3, d, ppm, Me2Se) 292.6. Anal. Calc. for
C26H17NO2Se, C, 68.73; H, 3.77; N, 3.08%. Found: C,
68.72; H, 3.91; N, 3.11%.
2 (a) S. Gronowitz, A. Konar and A.-B. Hornfeldt, Org. Magn.
Reson., 1977, 9, 213–217; (b) G. P. Mullen, N. P. Luthra,
R. B. Dunlap and J. D. Odom, J. Org. Chem., 1985, 50,
811–816; (c) G. A. Kalabin, D. F. Kushnarev, V. M. Bzesovsky
and G. A. Tschmutova, J. Org. Magn. Reson., 1979, 12, 598–604;
(d) G. A. Kalabin, D. F. Kushnarev and T. G. Mannafov, Zh. Org.
Khim., 1980, 16, 505–512; (e) W. Nakanishi, S. Hayashi and
T. Uehara, Eur. J. Org. Chem., 2001, 3933–3943.
3 (a) S. Hayashi and W. Nakanishi, J. Org. Chem., 1999, 64,
6688–6696; (b) W. Nakanishi, S. Hayashi and H. Yamaguchi,
Chem. Lett., 1996, 947–948; (c) W. Nakanishi, S. Hayashi,
A. Sakaue, G. Ono and Y. Kawada, J. Am. Chem. Soc., 1998,
120, 3635–3640; (d) W. Nakanishi and S. Hayashi, J. Org. Chem.,
2002, 67, 38–48.
X-Ray structure determination. Single crystals of 1a were
obtained from solutions of n-hexane–ethyl acetate (2 : 1, v/v)
after slow evaporation of the solvent at room temperature, 1b,
1c and 1f from solutions of n-hexane–dichloromethane
(2 : 1, v/v) and 1d from solutions of cyclohexane. Diffraction
data were collected on a Bruker Apex-II CCD diffractometer
equipped with a graphite-monochromated Mo-Ka radiation
source (l = 0.71070 A). The structures were solved by direct
methods (SHELXS-97),20 and refined by full-matrix least-
square methods on F2 for all reflections (SHELXL-97)21 with
all non-hydrogen atoms anisotropic and all hydrogen atoms
isotropic. Table 3 lists the parameters for 1a–d and 1f.
4 (a) W. Nakanishi and S. Hayashi, Chem. Lett., 1998, 523–524;
(b) W. Nakanishi and S. Hayashi, J. Phys. Chem. A, 1999, 103,
6074–6081.
5 (a) Organic Selenium Compounds: Their Chemistry and Biology,
ed. D. L. Klayman, W. H. H. Gunther, Wiley, New York, 1973;
(b) The Chemistry of Organic Selenium and Tellurium Compounds,
ed. S. Patai and Z. Rappoport, John-Wiley and Sons, New York,
1986, vols. 1 and 2; (c) Organic Selenium Chemistry, ed. D. Liotta,
Wiley-Interscience, New York, 1987; (d) Organoselenium
Chemistry:
A practical Approach, ed. T. G. Back, Oxford
University Press, Oxford, 1999; (e) Organoselenium Chemistry
Modern Developments in Organic Synthesis, Top. Curr. Chem.,
ed. T. Wirth, Springer, Berlin–Heidelberg–New York–London–
Paris–Tokyo, 2000.
6 W. Nakanishi, S. Hayashi and T. Uehara, J. Phys. Chem. A, 1999,
103, 9906–9912.
Analysis of 1H DNMR. The temperature-dependent spectra
of the aromatic protons of 1e and 1f (and 1a) were analyzed
using an NMR simulation program, gNMR22 (see Fig. 4, for
example).
7 S. Hayashi, H. Wada, T. Ueno and W. Nakanishi, J. Org. Chem.,
2006, 71, 5574–5585.
8 The importance of relative conformations between substituents
and probe sites in the substituent effects is pointed out. See, for
example, K. Bordwen and E. J. Grubbs, Angular Dependence of
Dipolar Substituent Effects, in Progress in Physical Organic
Chemistry, ed. R. W. Taft, John Wiley & Sons, New York, 1993,
vol. 19, pp. 183–224. See also refs. cited therein.
9 Sets of d(Se) in 9-(arylselanyl)anthracenes (I: p-YC6H4SeAtc),
d(Se: I) and 1-(arylselanyl)anthraquinones (II: p-YC6H4SeAtq),
d(Se: II), are demonstrated to be the standards of pl and pd,
respectively, based on the theoretical and experimental investiga-
tions. Although the temperature dependence of d(Se) is very small
in II (B: pd), that in I (A: pl) is not so small, which may show
that the structure of I (A: pl) is unstable relative to that of
II (B: pd). See, (a) W. Nakanishi, S. Hayashi, D. Shimizu
and M. Hada, Chem.–Eur. J., 2006, 12, 3829–3846; (b) S. Hayashi
and W. Nakanishi, Bioinorg. Chem. Appl., 2006, 1–13, DOI:
10.1155/BCA/2006/79327.
QC calculations. QC calculations are performed on 1a, 1b0,
1e and 1f using the Gaussian 03 program.13 The Møller–
Plesset second order energy correlation (MP2)16 level is also
applied with the 6-311+G(d) basis sets for Se and the 4-31G
basis sets for C and H (basis sets-A). The 6-311+G(d) basis
sets for Se and the 6-31G(d) basis sets for C and H (basis
sets-B) are also employed for the calculations at the MP2
level. The density functional theory (DFT) level of the Becke
three-parameter hybrid functional combined with the
Lee–Yang–Parr correlation functional (B3LYP)14,15 is also
applied with the 6-311+G(d) basis sets being employed for
Se and the 6-311G(d,p) basis sets for C and H.
10 The A and B conformations are involved for the anthryl group in I
and the anthraquinolyl group in II and pl and pd for the aryl
groups in I and II9.
11 G. Yamamoto, Tetrahedron, 1990, 46, 2761–2772.
Acknowledgements
12 G. Yamamoto, K. Inoue, H. Higuchi, M. Yonebayashi, Y. Nabeta
and J. Ojima, Bull. Chem. Soc. Jpn., 1998, 71, 1241–1248.
13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,
J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,
J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision D.05), Gaussian, Inc., Pittsburgh, PA, 2004.
This work was partially supported by a Grant-in-Aid for
Scientific Research (Nos. 16550038 and 19550041) from
the Ministry of Education, Culture, Sports, Science, and
Technology, Japan. The support of the Kitasato University
Research Grant for Young Researchers (to M. M.) is also
acknowledged.
References
1 (a) W. MacFarlane and R. J. Wood, J. Chem. Soc., Dalton Trans.,
1972, 1397–1401; (b) H. Iwamura and W. Nakanishi, J. Synth. Org.
Chem. Jpn., 1981, 39, 795–804; (c) The Chemistry of Organic
Selenium and Tellurium Compounds, ed. S. Patai, Z. Rappoport,
John-Wiley and Sons, New York, 1986, vol. 1, ch. 6;
(d) Compilation of Reported 77Se NMR Chemical Shifts,
ed. T. M. Klapotke, M. Broschag, Wiley, New York, 1996;
(e) H. Duddeck, Prog. Nucl. Magn. Reson. Spectrosc., 1995, 27,
1–323.
ꢁc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
1594 | New J. Chem., 2009, 33, 1588–1595