Kumar et al.
901
Table 1. Synthesis of calix[4]pyrroles from different ketones catalyzed by 20 mol%
Yb(OTf)3 in ionic liquids
Entry
Ketone
Product
Time (h)
Conversion (%)a,b
1
2
3
4
5
6
7
8
9
R1 = R2 = CH3
R1 = C(CH3)3, R2 = CH3
R1-R2 = -(CH2)4-
R1-R2 = -(CH2)5-
R1-R2 = -(CH2)7-
R1 = Ph, R2 = CH3
R1 = 4-Me-Ph, R2 = CH3
R1 = 4-Cl-Ph, R2 = CH3
R1 = 3-NO2-Ph, R2 = CH3
11
12
13
14
15
16
17
18
19
10
10
10
10
12
12
12
15
15
100 (92)
98 (84)
99 (88)
95 (85)
93 (79)
97 (85)
98 (84)
95 (78)
96 (75)
aThe isolated yield provided by column chromatography on silca gel is in parentheses.
1
bAll products were characterized by IR, ESI-MS, H NMR, and 13C NMR spectra.
References
Table 2. Reusability of recovered Yb(OTf)3 in ionic
liquid for the synthesis of meso-tetramethyl
tetraphenyl calix[4]pyrrole (16).
1. (a) P.A. Gale, J.L. Sessler, V. Kral, and V. Lynch. J. Am.
Chem. Soc. 118, 5140 (1996); (b) J.L. Sessler, P. Anzenbacher,
Jr., K. Jursikova, H. Miyaji, J.W. Genge, N.A. Tvermoes,
W.E. Allen, and J.A. Shiver. Pure Appl. Chem. 70, 2401
(1998).
Run
Conversion (%)
Product yield (%)
1
2
3
4
5
98
95
90
88
84
85
81
80
75
72
2. H. Miyaji, W. Sato, and J. L. Sessler. Angew. Chem. Int. Ed.
39, 1777 (2000).
3. A. Baeyer. Ber. Dtsch. Chem. Ges. 19, 2184 (1886).
4. J.A. Sessler, P. Anzenbacher, J.A. Shriver, K. Jursikova,
V. Lynch, and M. Marquez. J. Am. Chem. Soc. 122, 12061
(2000).
5. S. Shao, A. Wang, M. Yang, S. Jiang, and X. Yu. Synth.
Spectroscopic data of selected calix[4]pyrroles
Commun. 31, 1421 (2001).
6. (a) M.R. Kishan, N. Srinivas, K.V. Raghavan, S.J. Kulkarni,
J.A.R.P. Sarma, and M. Vairamani. Chem. Commun. 2226
(2001); (b) M.R. Kishan, V.R. Rani, M.R.V.S. Murty, P.S.
Devi, N. Srinivas, S.J. Kulkarni and K.V. Raghavan. J. Mol.
Catal. Chem. A, 223, 203 (2004); (c) A.J.F.N. Sobral. J. Chem.
Educ. 82, 618 (2005); (d) S.M.S. Chauhan, B. Garg, and
T. Bisht. Molecules, 12, 2458 (2007); (e) S. Dey, K. Pal, and
S. Sarkar. Tetrahedron Lett. 47, 5851 (2006).
7. For reviews on ionic liquids see (a) N. Jain, A. Kumar,
S. Chauhan, and S.M.S. Chauhan. Tetrahedron, 61, 1015
(2005); (b) C.E. Song. Chem. Commun. 1033 (2004).
8. (a) M. Freemantle. Chem. Eng. News, 76, 32 (1998); (b) G.-h.
Tao, L. He, N. Sun, and Y. Kou. Chem. Commun. 3562
(2005); (c) M.S. Rasalkar, S.V. Bhilare, A.R. Deorukhkar,
N.B. Darvatkar, and M.M. Salunkhe. Can. J. Chem. 85, 77
(2007).
meso-Octamethyl calix[4]pyrrole (11)
1H NMR (Me4Si; 400 MHz, DMSO-d6) δ: 9.23 (s, 4H),
5.67 (s, 8H), 1.5 (s, 24H). 13C NMR (100 MHz, DMSO-d6)
δ: 35.4, 41.2, 111.3, 132.6. HRMS m/z calcd. for C28H36N4:
428.2940; found: 429.2360 [M + H]+.
meso-Tetrakis(spirocyclopentane) calix[4]pyrrole (13)
1H NMR (Me4Si; 400 MHz, DMSO-d6) δ: 9.16 (s, 4H),
5.72 (s, 8H), 2.14 (t, J = 7.6 Hz, 16H), 1.59 (t, J = 7.6 Hz,
16H). 13C NMR (100 MHz, DMSO-d6) δ: 21.5, 26.5, 36.1,
40.3, 111.3, 132.6. HRMS calcd. for C36H44N4: 532.3566;
found: 533.1338 [M + H]+.
meso-Tetramethyl-tetrakis(3′-nitrophenyl) calix[4]pyrrole
(19)
9. V.I. Parvulescu and C. Hardacr. Chem. Rev. 107, 2615 (2007).
10. (a) S. Kobayashi. Synlett, 413 (1994); (b) S. Kobayashi,
M. Sugiura, H. Kitagawa, and W.W.L. Lam. Chem. Rev. 102,
2227 (2002).
1H NMR (Me4Si; 400 MHz, DMSO-d6) δ: 10.47 (s, 4H),
8.09 (m, 4H), 7.72 (m, 4H), 7.58 (m, 4H), 7.48 (m, 4H),
5.92 (s, 8H), 1.99 (s, 12H). 13C NMR (100 MHz, DMSO-d6)
δ: 32.8, 39.8, 111.6, 118.3, 121.4, 128.5, 131.7, 132.1,
136.3, 143.2. HRMS calcd. for C48H40N8O8: 856.2969;
found: 857.1823 [M + H]+.
11. R. Ding, K. Katebzadeh, L. Roman, K.-E. Bergquist, and
U.M. Lindstrom,.J. Org. Chem. 71, 352 (2006).
12. J. Forsberg, T. Balasuramanian, and V. Spaziano. J. Chem.
Soc. Chem. Commun. 1060 (1976).
13. (a) S. Kobayashi, I. Hachiya, T. Takahori, M. Araki, and
H. Ishitani. Tetrahedron Lett. 33, 6815 (1992);
(b) M. Yamanaka, A. Nishida, and M. Nakagawa. J. Org.
Chem. 68, 3112 (2003); (c) R.J. Lu, D. Liu, and R.W. Giese.
Tetrahedron Lett. 41, 2817 (2000); (d) M. Curini, F. Epifano,
F. Maltese, and M.C. Marcotullio. Eur. J. Org. Chem. 1631
(2003); (e) I. Hachiya and S. Kobayashi. J. Org. Chem. 58,
Acknowledgements
This work was supported by the Department of Science
and Technology, New Delhi (SR-FTP-CS-34-2007). IA is
thankful to the Birla Institute of Technology and Science,
Pilani, for an institutional research fellowship.
© 2008 NRC Canada