ally, this moiety has been prepared by nucleophilic aromatic
substitution of an activated aryl halide with heterocycles by
copper-mediated coupling or via Ullmann-type coupling.5
These protocols often require use of stoichiometric amounts
of copper reagents6 which lead to environmental problems
such as waste disposal, harsher conditions (exposure of
substrates to high temperature for extended periods of time),
and low tolerance of other functional groups. In some
instances palladium7 catalysts have been employed, but this
protocol is not general for the N-arylation of imidazoles due
to its toxicity, high cost, and specificity to ligands. This factor
coupled with economic attractiveness of copper has led to a
resurgence of interest in the Ullmann-type coupling reaction.8
Stoichiometric reagents such as aryllead triacetate,9 arylbo-
ronic acids,10 triarylbismuths,11 hypervalent arylsiloxanes,12
diaryl iodonium salts,13 arylstannanes,14 and copper triflate-
benzene15 are used in Cu-mediated N-arylation. However,
many of them have inherent disadvantages as they are toxic,
unstable, and difficult to access. In some cases only one of
the multiple aryl groups is transferred to the heterocycle. This
difficulty can be overcome by employing stable and readily
available aryl halides as the electrophilic coupling partners.
Recently N-arylation has been applied to many heterocycles
and various organic ligands such as amino acids,16 aliphatic
diamines,17 Schiff bases,18 ethylene glycol,19 diethyl salicy-
lamide,20 oxime-phosphine containing ligands,21 aminoarene
Per-6-amino-ꢀ-cyclodextrin as an Efficient
Supramolecular Ligand and Host for
Cu(I)-Catalyzed N-Arylation of Imidazole with
Aryl Bromides
Palaniswamy Suresh and Kasi Pitchumani*
School of Chemistry, Madurai Kamaraj UniVersity,
Madurai-625021, India
ReceiVed June 21, 2008
Per-6-amino-ꢀ-cyclodextrin (per-6-ABCD), acting simulta-
neously as a supramolecular ligand for CuI and host for aryl
bromides, catalyzes N-arylation of imidazole with aryl
bromides under mild conditions. This simple method pro-
ceeds with excellent yield for the coupling of imidazole with
various substituted aryl bromides demonstrating good toler-
ance of other functionalities.
(3) (a) Buckingham, J. B. In Dictionary of Natural Products; CRC Press:
Boca Raton, FL, 1994; Vol. 1. (b) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem.
2005, 70, 5164.
(4) (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (b) Nair,
V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed. 2004, 43, 5130.
(5) (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382. (b) Sircar, I.;
Duell, B. L.; Bobowski, G.; Bristole, J. A.; Evans, D. B. J. Med. Chem. 1985,
28, 1405. (c) Hassan, J. A.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. ReV. 2002, 102, 1359. (d) Schnurch, M.; Flasik, R.; Khan, A. F.; Spina,
M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283. (e) Taillefer,
M.; Xia, N.; Ouali, A. Angew. Chem., Int. Ed. 2007, 46, 934.
Nitrogen-containing heterocycles such as N-arylimidazoles
find extensive applications in medicinal,1 biological,2 natural
products,3 and N-heterocyclic carbene chemistry.4 Tradition-
(1) (a) Iizuka, K.; Akahane, K.; Momose, D.; Nakazawa, M. J. Med. Chem.
1981, 24, 1139. (b) Cozzi, P.; Carganico, G.; Fusar, D.; Grossoni, M.;
Menichincheri, M.; Pinciroli, V.; Tonai, R.; Vaghi, F.; Salvati, P. J. Med. Chem.
1993, 36, 2964. (c) Negwer, M. In Organic-Chemical Drugs and their Synonyms:
(An International SurVey), 7th ed.; Akademie Verlag: Berlin, Germany, 1994.
(d) Jiang, W.; Guan, J.; Macielag, M. J.; Zhang, S.; Qiu, Y.; Kraft, P.;
Bhattacharjee, S.; John, T. M.; Haynes-Johnson, D.; Lundeen, S.; Sui, Z. J. Med.
Chem. 2005, 48, 2126. (e) Su, D.-S.; Markowitz, M. K.; Murphy, K. L.; Wan,
B.-L.; Zrada, M. M.; Harrell, C. M.; O’Malley, S. S.; Hess, J. F.; Ransom, R. W.;
Chang, R. S.; Wallace, M. A.; Raab, C. E.; Dean, D. C.; Pettibone, D. J.;
Freidinger, R. M.; Bock, M. G. Bioorg. Med. Chem. Lett. 2004, 14, 6045. (f)
Lange, J. H. M.; van Stuivenberg, H. H.; Coolen, H. K. A. C.; Adolfs, T. J. P.;
McCreary, A. C.; Keizer, H. G.; Wals, H. C.; Veerman, W.; Borst, A. J. M.; de
Looff, W.; Verveer, P. C.; Kruse, C. G. J. Med. Chem. 2005, 48, 1823. (g)
Zhong, C.; He, J.; Xue, C.; Li, Y. Bioorg. Med. Chem. 2004, 12, 4009, and
references cited therein. (h) Lange, J. H. M.; van Stuivenberg, H. H.; Coolen,
H. K. A. C.; Adolfs, T. J. P.; McCreary, A. C.; Keizer, H. G.; Wals, H. C.;
Veerman, W.; Borst, A. J. M.; de Looff, W.; Verveer, P. C.; Kruse, C. G. J. Med.
Chem. 2005, 48, 1823. (i) Voets, M.; Antes, I.; Scherer, C.; Muller-Viera, U.;
Biemel, K.; Barassin, C.; Marchais-Oberwinkler, S.; Hartmann, R. W. J. Med.
Chem. 2005, 48, 6632. (j) Votes, M.; Antes, I.; Scherer, C.; Muller-Vieira, U.;
Barassin, C.; Marchais-Oberwinkler, S.; Hartmann, R. W. J. Med. Chem. 2006,
49, 2222. (k) Wiglenda, T.; Ott, I.; Kircher, B.; Schumacher, P.; Schuster, D.;
Langer, T.; Gust, R. J. Med. Chem. 2005, 48, 6516.
(6) Lindley, J. Tetrahedron 1984, 40, 1433.
(7) (a) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
(b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (c) Wolfe, J. P.; Wagaw,
S.; Marcoux, J.-F.; Buchwald, S. L Acc. Chem. Res. 1998, 31, 805. (d) Hartwig,
J. F. Acc. Chem. Res. 1998, 31, 852. (e) Yang, B. H.; Buchwald, S. L. J.
Organomet. Chem. 1999, 576, 125. (f) Muci, A. R.; Buchwald, S. L. Top. Curr.
Chem. 2002, 219, 131. (g) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.;
Viel, S. J. Org. Chem. 2005, 70, 3997.
(8) For selected reviews on the use of copper as the catalyst, see:(a)
Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337. (b)
Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(9) (a) Lopez, A. P.; Avendano, C.; Menendez, J. C. Tetrahedron Lett. 1992,
33, 659. (b) Lopez, A. P.; Avendano, C.; Menendez, J. C. J. Org. Chem. 1995,
60, 5678. (c) Elliott, G. I.; Konopelski, J. P. Org. Lett. 2000, 2, 3055. (d) Fedorov,
A. U.; Finet, J.-P. Eur. J. Org. Chem. 2004, 9, 2040.
(10) (a) Lam, P. Y.; Clark, C. G.; Sauber, S.; Adams, J.; Winters, M. P.;
Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941. (b) Collman,
J. P.; Zhong, M.; Zeng, L.; Costanzo, S. J. Org. Chem. 2001, 66, 1528. (c) Lan,
J. B.; Li, C.; Yu, X.; You, J. S.; Xie, R. G. Chem. Commun. 2004, 188.
(11) Fedorov, A. Y.; Finet, J.-P. Tetrahedron Lett. 1999, 40, 2747.
(12) Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.; DeShong,
P.; Clark, C. G. J. Am. Chem. Soc. 2000, 122, 7600.
(13) Kang, S. K.; Lee, S. H.; Lee, D. Synlett 2000, 1022.
(2) (a) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, B.; Yaono, R.;
Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.;
Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. Science 1998, 280, 1723. (b) Bambal,
R. B.; Hanzlik, R. P. Chem. Res. Toxicol. 1995, 8, 729.
(14) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Averill, K. M.;
Chan, D. M. T.; Combs, A. Synlett 2000, 674.
(15) Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. Tetrahedron Lett. 1999,
40, 2657.
10.1021/jo801811w CCC: $40.75
Published on Web 10/15/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 9121–9124 9121