ORGANIC
LETTERS
2008
Vol. 10, No. 22
5293-5296
Functionalized Analogues of an
Unnatural Amino Acid that Mimics a
Tripeptide ꢀ-Strand
Tatyana V. Khasanova, Omid Khakshoor, and James S. Nowick*
Department of Chemistry, UniVersity of California, IrVine,
IrVine, California 92697-2025
Received September 18, 2008
ABSTRACT
This paper introduces polar and hydrophobic variants of the unnatural amino acid Hao, which mimics the hydrogen-bonding functionality of
one edge of a ꢀ-strand. In these variants, the methyl side chain of Hao is replaced with acidic, basic, and hydrophobic groups. These modifications
can impart improved solubility and additional side-chain interactions to peptides containing Hao.
Peptidomimetic templates that mimic or induce helix, turn,
or ꢀ-sheet structures are useful for studying and controlling
the conformations and interactions of peptides and proteins.1
Our research group previously introduced the unnatural
amino acid Hao as a tripeptide ꢀ-strand mimic that forms
hydrogen bonds from only one edge (Figure 1).2 We have
developed Hao-containing peptides that fold to form ꢀ-sheet
structure, dimerize through edge-to-edge ꢀ-sheet interaction,
and antagonize ꢀ-sheet aggregation.3 Other research groups
have investigated Hao and related structures in peptidomi-
metic compounds and hydrogen-bonded assemblies.4,5
The original unnatural amino acid Hao provides the
hydrogen-bonding functionality of the peptide main chain
but lacks side-chain functionality. In this paper, we introduce
variants of Hao with acidic, basic, and hydrophobic side
chains: HaoK, HaoD, HaoF, and HaoL (Figure 1). We have
developed these variants to address specific problems with
solubility and folding of Hao-containing peptides that we
(3) (a) Nowick, J. S.; Lam, K. S.; Khasanova, T. V.; Kemnitzer, W. E.;
Maitra, S.; Mee, H. T.; Liu, R. J. Am. Chem. Soc. 2002, 124, 4972–4973.
(b) Nowick, J. S.; Chung, D. M. Angew. Chem., Int. Ed. Engl. 2003, 42,
1765–1768. (c) Chung, D. M.; Nowick, J. S. J. Am. Chem. Soc. 2004, 126,
3062–3063. (d) Chung, D. M.; Dou, Y.; Baldi, P.; Nowick, J. S. J. Am.
Chem. Soc. 2004, 126, 9998–9999. (e) Woods, R. J.; Brower, J. O.;
Castellanos, E.; Hashemzadeh, M.; Khakshoor, O.; Russo, W. A.; Nowick,
J. S. J. Am. Chem. Soc. 2007, 129, 2548–2558. (f) Khakshoor, O.; Demeler,
B.; Nowick, J. S. J. Am. Chem. Soc. 2007, 129, 5558–5569.
(4) For a few examples, see: (a) Yu, H.; Daura, X.; van Gunsteren, W. F.
Proteins: Struct., Funct., Bioinf. 2004, 54, 116–127. (b) Bonauer, C.; Zabel,
M.; Ko¨nig, B. Org. Lett. 2004, 6, 1349–1352. (c) MiltSchitzky, S.;
Mitchlova, V.; Stadlbauer, S.; Koenig, B. Heterocycles 2006, 67, 135–160.
(d) Yang, Y.; Yan, H.-J.; Chen, C.-F.; Wan, L.-J. Org. Lett. 2007, 9, 4991–
4994.
(1) For a few reviews, see: (a) Nowick, J. S. Acc. Chem. Res. 2008,
ASAP Article, DOI: 10.1021/ar800064f. (b) Hanessian, S.; Auzzas, L. Acc.
Chem. Res. 2008, ASAP Article, DOI: 10.1021/ar8000052. (c) Patgiri, A.;
Jochim, A. L.; Arora, P. S. Acc. Chem. Res. 2008, ASAP Article, DOI:
10.1021/ar700264k. (d) Sakai, N.; Mareda, J.; Matile, S. Acc. Chem. Res.
2008, ASAP Article, DOI: 10.1021/ar700229r. (e) Horne, W. S.; Gellman,
S. H. Acc. Chem. Res. 2008, ASAP Article, DOI: 10.1021/ar800009n. (f)
Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, ASAP Article, DOI:
10.1021/ar700263g. (g) Robinson, J. A. Acc. Chem. Res. 2008, ASAP
Article, DOI: 10.1021/ar700259k.
(5) (a) Li, Z.-T.; Hou, J.-L.; Li, C. Acc. Chem. Res. 2008, ASAP Article,
DOI: 10.1021/ar700219m. (b) Gong, B. Acc. Chem. Res. 2008, ASAP
Article, DOI: 10.1021/ar700266f.
(2) Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.;
Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654–7661.
10.1021/ol8021897 CCC: $40.75
Published on Web 10/21/2008
2008 American Chemical Society