1600
E. Sansiaume et al. / Tetrahedron: Asymmetry 21 (2010) 1593–1600
ð½n-Mꢃ0 ꢁ ½n-M-SꢃÞ ꢀ ð½Sꢃ0 ꢁ ½n-M-SꢃÞ
½n-M- Sꢃ
tration: 0.01 M) were then added followed by 25 lL of a 0.01 M
solution imidazole (final concentration = 0.5 mM). The oxidant, ox-
one (final concentration, 2.5 mM), was then added to the solution
KD
¼
ð7Þ
Which gives:
at a rate of 5 ꢂ 5
lL drops of 0.5 mM oxone over a period of 1 h.
ꢂ
ꢃ
KD
The same procedure was followed with the cofactor alone, and
without cofactor. The organic products were extracted with
ethyl-acetate and analyzed by GC using benzophenone as the
internal standard to determine the degree of conversion of styrene
and the nature of the products obtained. The enantiomeric excess
of the epoxide obtained was analyzed using a Dionex HPLC system
(U3000) with a peltier effect oven, and a diode array detector. The
separation was accomplished with a Chiralpak AD-H column
½Sꢃ0 ¼ ½n-M-Sꢃ ꢀ 1 þ
ð8Þ
½n-Mꢃ0 ꢁ ½n-M-Sꢃ
On the other hand, the absorbance values AS and A1 A1 mea-
sured for each of the two solutions follow the Beer–Lambert law:
AS ¼ en-M-S ꢀ ½n-M-Sꢃ ꢀ ‘ þ en-M ꢀ ½n-Mꢃ ꢀ ‘
A1 ¼ en-M ꢀ ½n-Mꢃ0 ꢀ ‘
As a result,
A ¼ AS ꢁ A1 ¼ en-M ꢀ ð½n-Mꢃ0 ꢁ ½n-MꢃÞ ꢀ ‘ ꢁ en-M-S ꢀ ½n-M-Sꢃ ꢀ ‘
en-M ꢀ ½n-M-Sꢃ ꢀ ‘ ꢁ en-M-S ꢀ ½n-M-Sꢃ ꢀ ‘
¼ ðen-M en-M-SÞ ꢀ ½n-M-Sꢃ ꢀ ‘
which gives (with ‘ = 1 cm):
DA can be linked to [n-M-S] by the following equation:
(5
l
M, 4.6 mm id ꢂ 250 mm L). The column temperature was
25 °C. The eluent was n-hexane and ethanol (98:02) with a flow
rate of 1 mL/min, and with a injection volume of 2
2 mg/mL).
D
lL (around
¼
ꢁ
References
D
ꢁ
A
en-M-S
1. Letondor, C.; Ward, T. R. Chem. Biochem. 2006, 7, 1845.
2. Sigman, J. A.; Kwok, B. C.; Lu, Y. J. Am. Chem. Soc. 2000, 122, 8192.
½n-M-Sꢃ ¼
ð9Þ
ð
en-M
Þ
3. Ricoux, R.; Allard, M.; Dubuc, R.; Dupont, C.; Marechal, J.-D.; Mahy, J. P. Org.
Biomol. Chem. 2009, 7, 3208.
4. Reetz, M. T.; Jiao, N. Angew. Chem., Int. Ed. 2006, 2476.
5. Marchetti, M.; Mangano, G.; Paganelli, S.; Botteghi, C. Tetrahedron Lett. 2000, 41,
260.
The relation (8) then becomes:
!
D
ꢁ
A
KD
½n-Mꢃ0 ꢁ
½Sꢃ0 ¼
ꢀ
en-M-S
1 þ
D
ꢁ
A
en-M
en-M
en-M-S
6. Collot, J.; Gradinaru, J.; Humbert, N.; Skander, M.; Zocchi, A.; Ward, T. R. J. Am.
Chem. Soc. 2003, 125, 9030.
ꢂ
ꢃ
D
ꢁ
A
en-M-S
7. Pordea, A.; Mathis, D.; Ward, T. R. J. Organomet. Chem. 2009, 694, 930.
8. Raffy, Q.; Ricoux, R.; Mahy, J. P. Tetrahedron Lett. 2008, 49, 1865.
9. Raffy, Q.; Ricoux, R.; Mahy, J. P. J. Mol. Catal. A 2010, 317, 19.
10. Liu, J. Y.; Li, X. F.; Li, Y. Z.; Chang, W. B.; Huang, A. J. J. Mol. Catal. A 2002, 187,
163.
11. Baciocchi, E.; Gerini, M. F.; Lanzalunga, O.; Lapi, A.; Lo Piparo, M. G. Org. Biomol.
Chem. 2003, 1, 422.
12. Luguya, R.; Jaquinod, L.; Fronczek, F. R.; Graça, M.; Vicente, H.; Smith, K. M.
Tetrahedron 2004, 60, 2757.
13. Collman, J. P.; Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.; Robinson, W. T. J.
Am. Chem. Soc. 1975, 97, 1427.
14. Fleischer, E. B.; Palmer, J. M.; Srivastava, T. S.; Chatterjee, A. J. Am. Chem. Soc.
1971, 13, 3162.
15. Katzenellenbogen, J. A.; Myers, H. N.; Johnson, H. J. J. Org. Chem. 1973, 38, 3525.
16. Adler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443.
17. De Lauzon, S.; Desfosses, B.; Moreau, M. F.; Le Trang, N.; Rajkowski, K.;
Cittanova, N. Hybridoma 1990, 9, 481.
18. Cochran, A. G.; Schultz, P. G. J. Am. Chem. Soc. 1990, 112, 9414.
19. Harada, A.; Okamoto, K.; Kamachi, M. Chem. Lett. 1991, 6, 953.
20. Quilez, R.; de Lauzon, S.; Desfosses, B.; Mansuy, D.; Mahy, J. P. FEBS Lett. 1996,
395, 73.
21. Casella, L.; Gullotti, M.; Ghezzi, R.; Poli, S.; Beringhelli, T.; Colonna, S.; Carrea, G.
Biochemistry 1992, 31, 9451.
22. Colonna, S.; Gaggero, N.; Carrea, G.; Pasta, P. J. Chem. Soc. Chem. Commun. 1992,
4, 357.
23. Okrasa, K.; Guibé-Jampel, E.; Thérisod, M. J. Chem. Soc., Perkin Trans. 1 2000,
1077.
24. Ohashi, M.; Koshiyama, T.; Ueno, T.; Yanase, M.; Fujii, H.; Watanabe, Y. Angew.
Chem. 2003, 42, 1005.
25. Carey, J. R.; Ma, S. K.; Pfister, T. D.; Garner, D. K.; Kim, H. K.; Abramite, J. A.;
Wang, Z.; Guo, Z.; Lu, Y. J. Am. Chem. Soc. 2004, 126, 10812.
26. Zhang, J. L.; Garner, D. K.; Liang, L.; Chen, Q.; Lu, Y. Chem. Commun. 1665, 2008.
27. Ricoux, R.; Lukowska, E.; Pezzotti, F.; Mahy, J. P. Eur. J. Biochem. 2004, 271,
1277.
28. Mahammed, A.; Gross, Z. J. Am. Chem. Soc. 2005, 127, 2883.
29. Pordea, A.; Creus, M.; Panek, J.; Duboc, C.; Mathis, D.; Novic, M.; Ward, T. R. J.
Am. Chem. Soc. 2008, 130, 8085.
¼ g
ð10Þ
en-M
e
n-M-S and en-M have been calculated with AS and A1, considering
that the addition of 0.5 equiv of 7A3/n-M cofactor, the absorption
of the antibody-cofactor solution measured is that of the 7A3–n-
M complex.
As a result, KD can be estimated with a non-linear regression of
[S]0 (2[7A3]0) with the function g
ꢀ
ꢁ
D
ꢁ
A
.
en-M
en-M-S
4.5. Catalytic activity of the metalloporphyrin–antibody 7A3
complexes
4.5.1. Sulfoxidation of thioanisole catalyzed by the metallo
porphyrin–7A3 complexes
The antibody 7A3 (7.5
Fe-, 1-Mn-, or 2-Mn (5
pH 3. 12.5 L of a 0.1 M solution of thioanisole in acetonitrile (final
concentration: 2.5 mM) and 25 L of a 0.01 M solution of imidazole
in bi-distilled water (final concentration: 500 M) were then
added. The oxidant, H2O2 (final concentration, 2.5 mM), was then
added to the solution at a rate of 5 ꢂ 5 L drops of 0.5 mM H2O2
l
M) was incubated for two hours with 1-
M) in 412.5 mL 0.05 M phosphate buffer,
l
l
l
l
l
over a period of 1 h. The same procedure was followed with the
cofactor alone, and without cofactor. The organic products were
extracted with ethyl-acetate and analyzed by GC using benzophe-
none as the internal standard to determine the degree of conver-
sion of the sulfide, and by HPLC on a Chiracel OD-H column
(iso65 hexane/propan-2-ol, 95:5; v/v) to determine the enantio-
meric excess of the sulfoxide thus obtained.
30. Hirao, H.; Kumar, D.; Thiel, W.; Shaik, S. J. Am. Chem. Soc. 2005, 127, 13007.
31. Reetz, M. T.; Rentzsch, M.; Pletsch, A.; Maywald, M. Chimia 2002, 56, 721.
32. Fernandez-Gacio, A.; Codina, A.; Fastrez, J.; Riant, O.; Soumillon, P.
ChemBioChem 2006, 7, 1013.
4.5.2. Epoxidation of styrene catalyzed by the metallo
porphyrin–7A3 complexes
The antibody 7A3 (7.5
Fe-, 1-Mn-, or 2-Mn (5
100 L of a 0.05 M solution of styrene in acetonitrile (final concen-
l
M) was incubated for two hours with 1-
33. Okrasa, K.; Kazlauskas, R. J. Chem. Eur. J. 2006, 12, 1587.
34. Collman, J. P.; Kodadek, T.; Raybuck, S. A.; Brauman, J. I.; Papazian, L. M. J. Am.
Chem. Soc. 1985, 107, 4343.
l
M) in 0.05 M phosphate buffer, pH 7.4.
l