Journal of the American Chemical Society
Page 10 of 12
(8) (a) Zhu, J.; Lin, Z.; Marder, T. B. Inorg. Chem. 2005, 44,
9384–9390; (b) Braunschweig, H.; Dewhurst, R. D.; Schneider, A.
Chem. Rev. 2010, 110, 3924ꢀ3957.
AUTHOR INFORMATION
Corresponding Author
1
2
3
4
5
6
7
8
9
(9) Syntheses of boryltin systems: (a) Protchenko, A. V.; Birjkuꢀ
mar, K. H.; Dange, D.; Schwarz, A. D.; Vidovic, D.; Jones, C.;
Kaltsoyannis, N.; Mountford, P.; Aldridge, S. J. Am. Chem. Soc.
2012, 134, 6500–6503; (b) Protchenko, A. V.; Dange, D.; Schwarz,
A. D.; Tang, C. Y.; Phillips, N.; Mountford, P.; Jones, C.; Aldridge, S.
Chem Commun. 2014, 50, 3841ꢀ3844. For a related (boryl)amidotin
compound see: (c) Hadlington, T. J.; Abdalla, J. A. B.; Tirfoin, R.;
Aldridge, S.; Jones, C. Chem. Commun. 2016, 52, 1717ꢀ1720.
(10) Wang, Y.; Ma, J. J. Organomet. Chem. 2009, 694, 2567ꢀ2575.
(11) Protchenko, A. V.; Schwarz, A. D.; Blake, M. P.; Jones, C.;
Kaltsoyannis, N.; Mountford, P.; Aldridge, S. Angew. Chem., Int. Ed.
2013, 52, 568ꢀ571.
* Simon Aldridge, Oxford Chemistry, tel: +44 (01865) 285201,
Author Contributions
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the manuꢀ
script.
Funding Sources
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We thank the Leverhulme Trust (F/08 699/E), the OUP John Fell
Fund, the ARC, the EU (Marie Curie grant PIEFꢀGAꢀ2013ꢀ
626441), NSERC and the EPSRC (EP/L025000/1 and
EP/K014714/1) for funding various aspects of this work.
(12) Finholt, A. E.; Bond, A. C., Jr.; Wilzbach, K. E.; Schlesinger,
H. I. J. Am. Chem. Soc, 1947, 69, 2692ꢀ2696.
(13) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314,
113ꢀ115.
ACKNOWLEDGMENT
(14) (a) Cosier J.; Glazer, A. M. J. Appl. Cryst. 1986, 19, 105–107;
(b) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786–790; (c)
Betteridge, P. W.; Cooper, J. R.; Cooper, R. I.; Prout, K.; Watkin, D.
J. J. Appl. Cryst. 2003, 36, 1487; (d) Cooper, R. I.; Thompson, A. L.;
Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100–1107; (e) Spek, A. J.
Appl. Cryst. 2003, 36, 7–13; (f) van der Sluis, P.; Spek, A. L. Acta
Cryst. 1990, A46, 194–201.
(15) (a) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.;
Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J.
Comput. Chem. 2001, 22, 931ꢀ967; (b) Fonseca Guerra, C.; Snijders,
J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391ꢀ
403; (c) ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit,
Phys. Rev. A, 1988, 38, 3098ꢀ3100; (e) Perdew, J. P. Phys. Rev. B
1986, 33, 8822ꢀ8824; (f) Snijders, J. G.; Vernooijs, P.; Baerends, E. J.
At. Data Nucl. Data Tables 1982, 26, 483ꢀ509; (g) van Lenthe, E.;
Baerends, E. J.; Snijders, J.G. J. Chem. Phys. 1993, 99, 4597ꢀ4610;
(h) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys.
1994, 101, 9783ꢀ9792; (i) van Lenthe, E.; Ehlers, A.; Baerends, E. J.
J. Chem. Phys. 1999, 110, 8943ꢀ8953.
We acknowledge the NMSF, Swansea University.
REFERENCES
(1) See, for example: Hartwig, J. F. in Organotransition Metal
Chemistry: From Bonding to Catalysis; University Science Books,
Sausalito, CA, 2010.
(2) For discussions of potential redoxꢀbased bond modification
processes based on phosphorus see: (a) Dunn, N. L.; Ha, M.; Radoseꢀ
vich, A. T. J. Am. Chem. Soc. 2012, 134, 11330ꢀ11333; (b) Zeng, G.;
Maeda, S.; Taketsuyu, T.; Sasaki, S. Angew. Chem., Int. Ed. 2014, 53,
4633ꢀ4637; (c) Cui, J.; Li, Y.; Ganguly, R.; Inthiiraraja, A.; Hirao, H.;
Kinjo, R. J. Am. Chem. Soc. 2014, 136, 16764ꢀ16767; (d) Zhao, W.;
McCarthy, S. M.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. J.
Am. Chem. Soc. 2014, 136, 17634ꢀ17644; (e) Robinson, T. P.; De
Rosa, D. M.; Aldridge, S.; Goicoechea, J. M. Angew. Chem. Int Ed.
2015, 54, 13758ꢀ13763. For a more broadꢀranging comparative disꢀ
cussion of Main Group elements and Transition Metals see: (f) Power,
P. P. Nature 2010, 463, 171–177.
(3) (a) Martin, D.; Soleilhavoup, M; Bertrand, G. Chem. Sci. 2011,
2, 389–399. See also (b) Mizuhata, Y.; Sasamori, T.; Tokitoh, N.;
Chem. Rev. 2009, 109, 3479ꢀ3511; (c) Yao, S.; Xiong, Y.; Driess, M.
Organometallics 2011, 30, 1748ꢀ1767.
(4) Reversible EꢀH bond activation at a carbene: (a) Moerdyk, J. P;
Blake, G. A.; Chaes, D. T.; Bielawski, C. W. J. Am. Chem. Soc. 2013,
135, 18798ꢀ18801. Reversible (formally oxidative) coordination of
ethylene at Group 14 centers: (b) Peng, Y.; Ellis, B. D.; Wang, X.;
Fettinger, J. C.; Power, P. P Science 2009, 325, 1668ꢀ1670; (c) Lips,
F.; Fettinger, J. C.; Mansikkamäki, A.; Tuononen, H. M.; Power, P. P.
J. Am. Chem. Soc. 2013, 136, 634ꢀ637.
(16) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem.
Rev. 2000, 100, 39–92.
(17) For an example of a silylene with a triplet ground state, see:
Sekiguchi, A.; Tanaka, T.; Ichinohe, M.; Akiyama, K.; TeroꢀKubota,
S. J. Am. Chem. Soc. 2003, 125, 4962ꢀ4963.
(18) Sn{N(SiMe3)2}2 is reported to be unreactive towards dihydroꢀ
gen.5a
(19) Consistent with the relative inertness of 2 compared to 1 with
respect to oxidative bond formation, [4+1] cycloaddition with 2,3ꢀ
dimethylbutadiene proceeds only under more forcing conditions for 2.
Thus, while both systems generate stannaꢀcycloꢀpentene complexes of
the type {(MeCCH2)2}Sn(X){B(NDippCH)2} [X = N(SiMe3)Dipp or
B(NDippCH)2], the reaction in the case of 1 proceeds in <5 min at
room temperature,20 while that for 2 requires stirring for 2 h (see ESI).
(20) Protchenko, A. V.; Dange, D.; Blake, M. P.; Schwarz, A. D.;
Jones, C.; Mountford, P.; Aldridge, S. J. Am. Chem. Soc. 2014, 136,
10902ꢀ10905.
(21) Similar structural observations have been made by Power and
Ragogna on PꢀH oxidative addition at a diarylstannylene.6c
(22) The first example of dihydrogen activation by a Main Group
system at ambient temperature/pressure was reported as late as 2005:
(a) Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc.
2005, 127, 12232ꢀ12233. For other examples of H2 activation by
Group 14 alkyne analogues see reference 7(e) and (b) Li, J.; Schenk,
C.; Goedecke C.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2011,
133, 18622–18625.
(5) (a) Peng, Y.; Ellis, B. D.; Wang, X.; Power, P. P. J. Am. Chem.
Soc. 2008, 130, 12268–12269; (b) Peng, Y.; Guo, J.ꢀD.; Ellis, B. D.;
Zhu, Z.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2009, 131,
16272–16282. See also (c) Inomata, K.; Watanabe, T.; Miyazaki, Y.;
Tobita, H. J. Am. Chem. Soc. 2015, 137, 11935ꢀ11937.
(6) Formal EꢀH bond oxidative addition at SnII: (a) Schager, F.;
Goddard, R.; Seevogel, K.; Pörschke, K.–R. Organometallics 1998,
17, 1546ꢀ1551; (b) Brown, Z. D.;Erickson, J. D.; Fettinger, J. C.;
Power, P. P. Organometallics 2013, 32, 617ꢀ622; (c) Dube, J. W.;
Brown, Z. D.; Caputo, C. A.; Power, P. P.; Ragogna, P. J. Chem.
Commun. 2014, 50, 1944ꢀ1946; (d) Erickson, J. D.; Vasko, P.; Riꢀ
paretti, R. D.; Fettinger, J. C.; Tuononen, H. M.; Power, P. P. Organꢀ
ometallics 2015, 34, 5785ꢀ5791. For an example of H2 activation at a
distannyne, RSnSnR, see (e) Peng, Y.; Byrnda, M.; Ellis, B. D.;
Fettinger, J. C.; Rivard, E.; Power, P. P. Chem. Commun. 2008, 6042–
6044; (f) Power, P.P. Acc. Chem. Res. 2011, 44, 627–637. See also:
(g) Vasko, P.; Wang, S.; Tuononen, H. M.; Power, P. P. Angew.
Chem. Int. Ed. 2015, 54, 3802ꢀ3805.
(23) For H2 activation by Main Group FLPs see: (a) Welch, G. C.;
San Juan, R. R.; Masuda, J.; Stephan, D. W. Science, 2006, 314,
1124–1126; (b) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed.
2010, 49, 46–76.
(7) For a recent example of the reductive elimination of H2 from
SnIV, see Sindlinger, C. P.; Stasch, A.; Bettinger, H. F.; Wesemann, L.
Chem. Sci. 2015, 6, 4733ꢀ4751.
ACS Paragon Plus Environment