Indenyl Hemilability
Organometallics, Vol. 27, No. 23, 2008 6297
2.9 Hz, C2), 147.1 (d, JPC ) 2.4 Hz, C3a or C7a), 144.1 (d, 3JPC
)
3H, NMe), 1.96 (m, 1H, P(CHMecMed)), 1.71 (s, 15H, C5Me5),
3
3
3
8.2 Hz, Si-aryl C), 142.3 (d, JPC ) 2.3 Hz, Si-aryl C), 137.2 (Si-
aryl CHs), 137.1 (d, JPC ) 7.3 Hz, C7a or C3a), 133.9 (Si-aryl
CHs), 128.4 (Si-aryl CHs), 127.3 (Si-aryl CH), 127.2 (Si-aryl CH),
127.0 (Si-aryl CH), 126.5 (C5 or C6), 126.2 (C4 or C7), 118.0
(C6 or C5), 116.6 (C7 or C4), 94.5 (C5Me5), 92.6 (C3), 63.7 (d,
1.34 (d of d, JPH ) 10.5 Hz, JHH ) 7.0 Hz, 3H, P(CHMecMed)),
3 3
1.18 (d of d, JPH ) 16.0 Hz, JHH ) 7.0 Hz, 3H, P(CHMecMed)),
0.94 (d of d, 3JPH ) 15.0 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMeaMeb)),
3
0.81 (d of d, JPH ) 16.5 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMeaMeb));
2
13C{1H} (C6D6): δ 235.3 (d, JPC ) 13.3 Hz, RudC), 184.3 (d,
2
1JPC ) 6.2 Hz, C1), 43.6 (d, JPC ) 13.0 Hz, Ru-CH2-N), 42.5
2JPC ) 26.2 Hz, C2), 149.7 (N-aryl C), 142.1 (C3a or C7a), 139.4
(d, J ) 8.2 Hz, C7a or C3a), 130.0 (2 aryl CHs), 127.5 (N-aryl
1
1
(NMe), 29.5 (d, JPC ) 6.0 Hz, P(CHMecMed)), 28.8 (d, JPC
)
2
22.6 Hz, P(CHMeaMeb)), 22.9 (d, JPC ) 5.5 Hz, P(CHMecMed)),
19.8 (P(CHMeaMeb)), 19.4 (m, P(CHMecMed)), 18.9 (m, P(CH-
MeaMeb)), 10.7 (C5Me5); 31P{1H} NMR (C6D6): δ 61.1; 29Si{1H}
NMR (C6D6): δ 9.8 (1H-29Si HMBC), 2JSiH ) 21.0 Hz (1H-coupled
1H-29Si HMQC). A crystal of 8 suitable for X-ray diffraction
analysis was grown from a concentrated pentane solution at -35
°C.
CH), 123.8 (N-aryl CH), 123.3 (N-aryl CH), 117.0 (aryl CH), 115.8
1
(2 N-aryl CHs), 115.0 (aryl CH), 94.6 (C5Me5), 88.4 (d, JPC
)
3
43.8 Hz, C3), 45.3 (NMe), 35.2 (d, JPC ) 10.8 Hz, C1), 29.4 (d,
1JPC ) 17.2 Hz, P(CHMecMed)), 24.3 (d, JPC ) 34.3 Hz,
1
2
P(CHMeaMeb)), 20.2 (P(CHMeaMeb)), 19.7 (d, JPC ) 7.2 Hz,
P(CHMecMed)), 19.4-19.2 (m, P(CHMeaMeb) and P(CHMecMed)),
11.1 (C5Me5); 31P{1H} NMR (C6D6): δ 76.2.
Isomerization of 8 to 9. After extended time periods in solution
(0.016 g, 0.8 mL C6D6), 8 was observed by use of 31P NMR to
convert partially to a new phosphorus-containing species, 9 (the
SiPh2H analogue of 7). After one week, the 8:9 ratio was ca. 10:1.
Periodic monitoring of the solution by 31P NMR revealed a ratio
of 8:9 of 1:8 after 5 months. Continued observation found little
change in this ratio up to 8 months. In an effort to accelerate the
transformation of 8 to 9, a solution of 8 (0.018 g, 0.8 mL C6D6)
was heated at 60 °C. However, 9 was observed to decompose to a
variety of phosphorus-containing species under these conditions
within 48 h. Data for 9: 1H NMR (C6D6): δ 11.66 (s, 1H, RudCH),
7.89-7.86 (m, 2H, Si-aryl Hs), 7.50-7.47 (m, 2H, Si-aryl Hs),
7.40 (d, 3JHH ) 7.5 Hz, 1H, C4-H or C7-H), 7.32-7.08 (m, 9H,
3 aryl Hs and 6 Si-aryl Hs), 5.91 (d, J ) 1.0 Hz, 1H, C3-H), 5.75
Synthesis of 11. To a glass vial containing a solution of 3 (0.10
g, 0.20 mmol) in benzene (7 mL) was added pyrrole (0.016 mL,
0.23 mmol) via Eppendorf micropipette. The addition caused an
immediate color change from dark red to a lighter red-orange. After
10 min, analysis of 31P NMR data collected on an aliquot of this
solution indicated quantitative conversion to 11. The mixture was
then dried in Vacuo, followed by trituration with pentane (1.5 mL).
After removal of volatile materials in Vacuo, 11 was isolated as an
analytically pure, reddish-brown powder (0.11 g, 0.19 mmol, 95%).
Anal. calcd for C31H43PN2Ru: C 64.65; H 7.53; N 4.87. Found: C
64.51; H 7.35; N 4.72. 1H NMR (C6D6): δ 12.49 (s, 1H, RudCH),
7.28 (d, 3JHH ) 8.0 Hz, 1H, C4-H or C7-H), 7.23 (d, 3JHH ) 7.5
3
Hz, 1H, C7-H or C4-H), 7.17 (t, JHH ) 7.5 Hz, 1H, C5-H or
C6-H), 7.01 (apparent d of t, J ) 7.5 Hz, J ) 1.0 Hz, 1H, C6-H
or C5-H), 6.85 (br. m, 1H, pyrrole-H), 6.68-6.53 (br. m, 2H,
pyrrole-Hs), 6.11 (br. m, 1H, pyrrole-H), 5.94 (d, J ) 1.5 Hz, 1H,
C3-H), 5.09 (d, 2JPH ) 14.5 Hz, 1H, C1-H), 3.09 (s, 3H, NMe),
2.97 (m, 1H, P(CHMeaMeb)), 1.64 (d, J ) 1.0 Hz, 15H, C5Me5),
1.48 (d of d, 3JPH ) 15.5 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMeaMeb)),
2
(d, J ) 4.5 Hz, 1H, Si-H), 5.49 (d, JPH ) 14.5 Hz, 1H, C1-H),
3.08-3.01 (m, 4H, NMe and P(CHMeaMeb)), 1.69 (s, 15H, C5Me5),
1.51 (m, 1H, P(CHMecMed)), 1.36 (d of d, 3JPH ) 15.5 Hz, 3JHH
7.0 Hz, 3H, P(CHMeaMeb)), 0.91 (d of d, 3JPH ) 16.5 Hz, 3JHH
)
)
)
)
)
3
3
7.0 Hz, 3H, P(CHMecMed)), 0.81 (d of d, JPH ) 15.0 Hz, JHH
3
3
7.5 Hz, 3H, P(CHMeaMeb)), 0.48 (d of d, JPH ) 10.0 Hz, JHH
1.17 (m, 1H, P(CHMecMed)), 0.94 (d of d, 3JPH ) 15.0 Hz, 3JHH
)
)
)
)
)
7.0 Hz, 3H, P(CHMecMed)); 13C{1H} (C6D6): δ 250.8 (d, JPC
7.0 Hz, 3H, P(CHMeaMeb)), 0.50 (d of d, JPH ) 15.0 Hz, JHH
3
3
3
3
17.2 Hz, RudC), 153.0 (C2), 149.8 (Si-aryl C), 145.7 (Si-aryl C),
143.2 (C3a or C7a), 140.2 (d, JPC ) 8.4 Hz, C7a or C3a), 137.6
(Si-aryl CHs), 135.7 (Si-aryl CHs), 127.1 (Si-aryl CH or aryl CH),
126.9 (Si-aryl CH or aryl CH), 126.8 (Si-aryl CH or aryl CH),
126.7 (Si-aryl CH or aryl CH), 126.5 (Si-aryl CH or aryl CH),
124.7 (C4 or C7), 123.3 (Si-aryl CH or aryl CH), 120.4 (Si-aryl
CH or aryl CH), 109.0 (C3), 96.7 (C5Me5), 49.8 (NMe), 44.3 (d,
1JPC ) 9.7 Hz, C1), 29.2 (d, 1JPC ) 18.9 Hz, P(CHMecMed)), 27.0
(d, 1JPC ) 23.5 Hz, P(CHMeaMeb)), 19.4 (m, P(CHMeaMeb)), 19.2
7.5 Hz, 3H, P(CHMecMed)), 0.31 (d of d, JPH ) 10.5 Hz, JHH
7.5 Hz, 3H, P(CHMecMed)); 13C{1H} (C6D6): δ 247.4 (d, JPC
2
20.1 Hz, RudC), 151.7 (C2), 143.5 (C3a or C7a), 140.5 (d, JPC
8.8 Hz, C7a or C3a), 126.7 (C5 or C6), 124.6 (C4 or C7), 123.5
(C6 or C5), 120.7 (C7 or C4), 109.6 (C3), 108.3-108.0 (br. m,
1
pyrrole-CHs), 97.2 (C5Me5), 49.7 (NMe), 45.0 (d, JPC ) 7.3 Hz,
C1), 27.5 (d, 1JPC ) 23.3 Hz, P(CHMecMed)), 26.2 (d, 1JPC ) 17.2
2
Hz, P(CHMeaMeb)), 21.6 (d, JPC ) 4.4 Hz, P(CHMeaMeb)), 19.1
2
(P(CHMecMed)), 18.2 (d, JPC ) 4.9 Hz, P(CHMeaMeb)), 17.1 (d,
2
2
(d, JPC ) 3.3 Hz, P(CHMeaMeb)), 19.0 (d, JPC ) 6.9 Hz,
2JPC ) 5.5 Hz, P(CHMecMed)), 10.5 (C5Me5); 31P{1H} NMR (C6D6):
δ 89.0. Upon dissolution of 11 (0.022 g) in C6D6 (0.8 mL), partial
isomerization to the corresponding vinylic isomer 11b (analogous
to 10), as well as dissociation to give 3, was noticed over the course
of 24 h (ratio of 11:11b:3, ca. 21:11:1 31P NMR). Selected NMR
data for 11b: 1H NMR (C6D6): δ 12.80 (d, J ) 2.0 Hz, 1H,
RudCH), 6.54 (apparent t, J ) 2.0 Hz, 2H, pyrrole-Hs), 6.36
(apparent t, J ) 2.0 Hz, 2H, pyrrole-Hs), 3.02 (s, 3H, NMe),
2.96-2.92 (m, 2H, C(Ha)(Hb)), 1.61 (d, J ) 1.0 Hz, 15H, C5Me5),
2
P(CHMecMed)), 17.7 (d, JPC ) 7.3 Hz, P(CHMecMed)), 10.9
(C5Me5); 31P{1H} NMR (C6D6): δ 91.2; 29Si{1H} NMR (C6D6): δ
26.6, JSiH ) 157.8 Hz (1H-coupled H-29Si HMQC).
1
1
Formation of 10. To a glass vial containing a solution of 3 (0.10
g, 0.20 mmol) in benzene (7 mL) was added PhNH2 (0.019 mL,
0.20 mmol) via Eppendorf micropipette. The addition caused an
immediate color change from dark red to dark orange. After 10
min, 31P NMR data collected on an aliquot of this solution indicated
the clean conversion to two phosphorus-containing products
exhibiting resonances at 64.0 ppm (tentatively assigned as 4 · NH2Ph
by comparison of 1H NMR data to that of 4 · NH3 and 4 · NC5H11)
and 76.2 ppm (10) (ca. 4:1 ratio); after 2 h, the ratio of 4 · NH2Ph:
10 was ca. 2:1. After 72 h, 31P NMR analysis revealed the presence
of 10 and an as-yet-unidentified species (br. m, 62.1 ppm) in a
ratio of ca. 10:1. Efforts to obtain 10 in analytically pure form have
thus far proven unsuccessful. Data for 10: 1H NMR (C6D6): δ 12.88
3
3
1.19 (d of d, JPH ) 19.0 Hz, JHH ) 7.0 Hz, 3H, P(CHMeMe)),
3
3
1.05 (d of d, JPH ) 11.0 Hz, JHH ) 7.0 Hz, 3H, P(CHMeMe)),
3
3
0.85 (d of d, JPH ) 13.5 Hz, JHH ) 7.0 Hz, 3H, P(CHMeMe)),
3
3
0.65 (d of d, JPH ) 15.5 Hz, JHH ) 7.0 Hz, 3H, P(CHMeMe));
13C{1H} (C6D6): δ 249.1 (d, JPC ) 20.8 Hz, RudC), 133.2 (2
2
pyrrole-CHs), 107.3 (2 pyrrole-CHs), 99.2 (C5Me5), 49.9 (NMe),
40.7 (C1), 31.6 (d, 1JPC ) 24.9 Hz, P(CHMeMe)), 24.0 (d, 1JPC
)
25.2 Hz, P(CHMeMe)), 19.3 (d, 2JPC ) 6.2 Hz, P(CHMeMe)), 18.5
4
3
2
(d of d, JHH ) 15.5 Hz, JPH ) 2.0 Hz, 1H, RudCH), 9.71 (d,
4JHH ) 15.5 Hz, 1H, N-H), 7.27 (m, 1H, N-aryl H), 7.19 (m, 1H,
N-aryl H), 7.07 (m, 1H, aryl H), 6.88-6.83 (m, 3H, aryl Hs),
6.82-6.78 (m, 2H, N-aryl Hs), 6.73 (m, 1H, N-aryl H), 3.39-3.25
(AB m, 2H, C(H )(H )), 2.90 (m, 1H, P(CHMeaMeb)), 2.69 (s,
(d, JPC ) 10.7 Hz, P(CHMeMe)), 10.6 (C5Me5); 31P{1H} NMR
(C6D6): δ 61.6.
Synthesis of 12. Within a glovebox, a Schlenk flask was
charged with 4 · PHPh2 (0.10 g, 0.14 mmol), a magnetic stir-
bar, and benzene (6 mL). After sealing the reaction flask, it was
a
b