H. Y. Lo et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6218–6221
6221
Table 1
Results of di-substituted inhibitors’ activities with different R2 (refer to general formula in Fig. 2)
a
a
a
Compound
R1
R2
ITK IC50
(lM)
IRK IC50
(lM)
Ca+ flux IC50
(lM)
IL-2 inhibition IC50
>5
(lM)
1
—
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
—
H
0.025
0.007
0.005
0.010
0.011
0.006
0.005
0.065
0.067
0.013
0.058
0.270
0.030
0.130
0.006
0.009
0.006
0.042
0.009
0.008
0.012
0.009
0.007
0.005
0.145
0.48
3.25
>5
0.97
4.00
>5
>5
>5
>5
>5
2.4
8b
8c
8e
8f
8g
8a
8d
8h
8i
0.38
0.39
0.54
0.62
0.76
0.69
0.99
>5
1.90
>5
>5
>5
>5
0.62
1.40
0.57
>5
0.74
0.81
2.2
0.28
2
0.41
CN
COOMe
Ph
2-Pyridine
3-Pyridine
4-Pyridine
2-MeO-Ph
3-MeO-Ph
4-MeO-Ph
2-CF3-Ph
8j
8k
8l
>5
>5
>5
3-CF3-Ph
4-CF3-Ph
8m
8n
8p
8q
8r
8s
8t
8u
8v
8w
8x
2-NH2-Ph
3-NH2-Ph
4-NH2-Ph
3-NO2-Ph
4-OH-Ph
2-Pyrazine
1-Imidazole
4-(1H)-Pyrazole
6-Pyridine-2-ylamine
5-Pyrimidin-2-ylamine
1.95
4.90
3.30
4.30
2.20
>5
>5
0.33
3.8
3
1.5
1.6
a
Values are means of three experiments.
Table 2
5. Fowell, D. J.; Shinkai, K.; Liao, X. C.; Beebe, A. M.; Coffman, R. L.; Littman, D. R.;
Locksley, R. M. Immunity 1999, 11, 399.
6. Kanner, S. B.; Perez-Villar, J. J. Trends Immunol. 2003, 24, 249.
Results of tri-substituted inhibitors’ activities with different R2 (refer to general
formula in Fig. 2)
7. (a) Snow, R. J.; Abeywardane, A.; Cywin, C. L.; Lord, J.; Kashem, M. A.; Khine,
H. H.; Kowalski, J. A.; Pullen, S. S.; Roth, G. P.; Sarko, C. R.; Wilson, N. S.;
Winters, M.; Wolak, J. P. Bioorg. Med. Chem. Lett. 2007, 17, 3660; (b) Winters,
M. P.; Robinson, D. J.; Khine, H. H.; Pullen, S. S.; Woska, J. R., Jr.; Raymond, E.
L.; Sellati, R.; Cywin, C. L.; Snow, R. J.; Kashem, M. A.; Wolak, J. P.; King, J.;
Kaplita, P. V.; Liu, L. H.; Farrell, T. M.; DesJarlais, R.; Roth, G. P.; Takahashi, H.;
Moriaty, K. J. Bioorg. Med. Chem. Lett. 2008, 18, 5541; (c) Moriarty, K. J.;
Takahashi, H.; Pullen, S. S.; Khine, H. H.; Sallati, R. H.; Raymond, E. L.; Woska,
J. R., Jr.; Jeanfavre, D. D.; Roth, G. P.; Winters, M. P.; Qiao, L.; Ryan, D.;
DesJarlais, R.; Robinson, D.; Wilson, M.; Bobko, M.; Cook, B. N.; Lo, H. Y.;
Nemoto, P. A.; Kashem, M. A., et al Bioorg. Med. Chem. Lett. 2008, 18, 5545;
(d) Moriarty, K. J.; Winters, M.; Qiao, L.; Ryan, D.; DesJarlis, R.; Robinson, D.;
Cook, B. N.; Kashem, M. A.; Kaplita, P. V.; Liu, L. H.; Farrell, T. M.; Khine, H.
H.; King, J.; Pullen, S. S.; Roth, G. P.; Magolda, R.; Takahashi, H. Bioorg. Med.
Chem. Lett. 2008, 18, 5537.
R1
R2
ITK IC50
M)
IRK IC50
M)
Ca+ flux IC50
(lM)
a
a
a
Compound
(l
(l
9c
9d
9e
9f
9b
9h
Me
Me
Me
Me
Me
Me
H
CN
COOMe
Ph
3-Pyridine
4-Pyridine
0.037
0.063
0.039
0.075
0.039
0.059
>5
0.29
0.29
1.10
3
1.6
0.83
4.50
3.60
>5
>5
>5
a
Values are means of three experiments.
Concerning the selectivity over other Tec kinase family, com-
pound 8x showed high activity on BTK (5 nM) and moderate selec-
tivity over TXK (700 nM). However the implication of the
selectivity over other Tec kinase on the indication (inflammation)
is unclear at this point.
In conclusion, a series of trans-stilbene-like 2-aminobenzimid-
azole inhibitors were designed and synthesized. The intrinsic
potencies, cellular activities, and selectivity of the compounds
were improved when compared with the lead compound. Further-
more, some of the top compounds showed activity in the IL-2 func-
tional assay. It is predicted that the improvement in activity is due
to partial occupancy of the KSP. Further studies in this area are
underway.
8. White, A.; Abeywardane, A.; Cook, B. N.; Fuschetto, N.; Gautschi, E.; John, A.;
Kroe, R. R.; Kronkaitis, A.; Li, Xiang; Pullen, S. S.; Roma, T.; Moriarty, K. J.; Roth,
G. P.; Snow, R. J.; Studts, J. M.; Takahashi, H.; Farmer, B.T. II.; J. Biol. Chem,
submitted for publication.
9. Representative procedure for the Heck type coupling reactions: To a solution of
bromothiophene 5 (50 mg, 0.095 mmol) in DMF (5 mL) were added 2-vinyl
pyridine (0.02 mL, 0.19 mmol), Pd2(dba)3 (9 mg, 0.01 mmol), tri-tert-
butylphosphine (21 mg, 0.095 mmol), N-methyl-dicyclohexylamine (0.02 mL,
0.095 mmol) and Et4NCl (16 mg, 0.095 mmol). The solution was heated to
100 °C in a sealed tube for 12 h. The reddish-brown solution was cooled down
and 3-mercaptopropyl-functionalized silica gel (100 mg) was added. The
mixture was stirred for 10 min and was filtered. The filtrate was washed
with water and extracted with EtOAc. The organic layer was concentrated and
the residue was purified by column chromatography with 5% MeOH in CH2Cl2
as the eluent to afford vinyl pyridine 8 g (39 mg, 75%) as colorless oil.
10. (a) Kashem, M. A.; Nelson, R. M.; Yingling, J. D.; Pullen, S. S.; Prokopowicz, A. S.,
III; Jones, J. W.; Wolak, J. P.; Rogers, G. R.; Morelock, M. M.; Snow, R. J.; Homon,
C. A.; Jakes, S. J. Biomol. Screening 2007, 12, 70; (b) Takata, R.; Kurosaki, T. J. Exp.
Med. 1996, 184, 31.
References and notes
11. CD4+ T-cells are isolated from whole blood by positive selection. Purified T-
cells are activated through the TCR and CD28 via anti-CD3 and anti-CD28
mAbs. Compounds are diluted in 10% DMSO to a final concentration of .25%
1. Smith, C. I.; Islam, T. C.; Mattsson, P. T.; Mohamed, A. J.; Nore, B. F.; Vihinen, M.
Bioessays 2001, 23, 436.
2. Forssell, J.; Sideras, P.; Eriksson, C.; Malm-Erjefält, M.; Rydell-Törmänen, K.;
Ericsson, P.; Erjefält, J. S. Am. J. Respir. Cell. Mol. Biol 2005, 32, 511.
3. Schaeffer, E. M.; Yap, G. S.; Lewis, C. M.; Czar, M. J.; McVicar, D. W.; Cheever, A.
W.; Sher, A.; Schwartzberg, P. L. Nat. Immune 2001, 2, 1183.
4. Schaeffer, E. M.; Debnath, J.; Yap, G.; McVicar, D.; Liao, X. C.; Littman, D. R.;
Sher, A.; Varmus, H. E.; Lenardo, M. J.; Schwartzberg, P. L. Science 1999, 284,
638.
DMSO at every dose. Fifty thousand cells are added in 100
lL of media/well
followed by 100 L of Compound or DMSO alone. Cells incubate overnight at
l
37 °C and then the supernatants are analyzed for IL-2 with the R&D Systems IL-
2 ELISA kit (Cat. No. D2050) following a 1:10 dilution. IC50s are calculated by
SAS.