Table 1 Stereoselective glycosylation with 1 and 2
Run
Base
Sugara
1:2
Lewis acid
Product
Yield (%)b
β:α (%)c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2b
2b
2b
2b
2b
2b
1:1
1:1
1:1
1:1
1:1
2:1
2:1
2:1
2:1
2:1
2:1
2:1
2:1
2:1
2:1
2:1
None
0
44
36
15
1a
TMSOTf
BF3OEt2
ZnI2
3a
3a
3a
3a
3a
3b
3c
3d
3e
4a
4b
4c
4d
4e
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
1a
1a
1a
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
MSAd
54 (95)
81 (98)
75 (99)
77 (98)
66 (97)
64 (97)
75 (99)
71 (98)
65 (97)
55 (96)
53 (95)
0
1a
1b
1c
1d
1e
1a
1b
1c
1d
1e
Cytosine
a 2a: R1 = H, 2b: R2 = TBDPSOCH2. b Isolated yields (conversion yields). c Determined by HPLC (chiral Daicel OD column, iPrOH:n-hexane = 1:9)
and 1H-NOE data. d MSA = methanesulfonic acid.
E. T. Jarvi, D. P. Matthews, R. J. Resvick and E. Wagner,
Biochemistry, 1996, 35, 8381.
3 (a) S. S. Mao, M. I. Johnson, J. M. Bollinger, C. H. Baker and
J. Stubbe, in Molecular Mechanisms in Bioorganic Process, ed. C.
Bleasdale and B. T. Goldman, Royal Society of Chemistry, London,
1990, p. 305; (b) H. L. Elford, M. Freese, E. Passamani and H. P.
Morris, J. Biol. Chem., 1970, 245, 5228.
4 (a) K. Takenuki, A. Matsuda, T. Ueda, T. Sasaki, A. Fuji and
K. Yamagami, J. Med. Chem., 1988, 31, 1064; (b) C. H. Baker,
J. Banzon, J. M. Bollinger, J. Stubbe, V. Samano, M. J. Robins,
B. Lippert, E. Jarvi and R. Resvick, J. Med. Chem., 1991, 34, 1879.
5 (a) Z. Xi, P. Agback, J. Plavec, A. Sandstrom and J. Chatto-
padhyaya, Tetrahedron, 1992, 48, 349; (b) Z. Xi, C. Glemarec and
J. Chattopadhyaya, Tetrahedron, 1993, 49, 7525; (c) S. Velazquez,
M. L. Jimeno, S. Huss, J. Balzarini and M.-J. Camarasa,
J. Org. Chem., 1994, 59, 7661; (d) A. E. A. Hassan, S. Shuto and
A. Matsuda, J. Org. Chem., 1997, 62, 11.
6 (a) E. Walton, S. R. Jenkins, R. F. Nutt, F. W. Holly and M. Nemes,
J. Med. Chem., 1969, 12, 306; (b) L. N. Beigelman, B. S. Ermolinsky,
G. V. Gurskaya, E. N. Tsapkina, M. Y. Karpeisky and S. N.
Mikhailov, Carbohydr. Res., 1987, 166, 219; (c) J. Wolf, J.-M. Jarrige,
J.-C. Florent, D. S. Grierson and C. Monneret, Synthesis, 1992, 773;
(d) R. E. Harry-O’kuru, J. M. Smith and M. S. Wolfe, J. Org. Chem.,
1997, 62, 1754.
7 (a) R. Murali, C. V. Ramana and M. Nagarajan, J. Chem. Soc.,
Chem. Commun., 1995, 217; (b) K. J. Henry, Jr. and B. Fraser-Reid,
Tetrahedron Lett., 1995, 36, 8901; (c) J. O. Hoberg and J. J. Bozell,
Tetrahedron Lett., 1995, 36, 6831; (d) J. O. Hoberg and D. J. Claffey,
Tetrahedron Lett., 1996, 37, 2533; (e) C. M. Timmers, M. A.
Leeuwenburgh, J. C. Verheijen, G. A. van der Marel and J. H. van
Boom, Tetrahedron: Asymmetry, 1996, 7, 49.
Scheme 2 Determination of stereochemistry.
inhibit the activation of the cyclopropane diester, and give rise
to no reaction.
In conclusion, we have achieved the new syntheses of
1Јβ-2Ј,3Ј-dideoxy-2Ј-bis(ethoxycarbonyl)methyluridine nucleo-
sides, which may be used in biochemical studies on ribonucleo-
tide reductase related to ribozyme12 from carbohydrates in a
stereoselective fashion. Furthermore, these 2Ј-C-branched
nucleoside derivatives might display promising chemothera-
peutic activities and we are currently exploring their biological
activities.
8 For examples in strained-ring opening of glycal by nucleobase, see:
K. Chow and S. Danishefsky, J. Org. Chem., 1990, 55, 4211.
9 To a mixture of glycal 7e (1.5 mmol) and dirhodium tetraacetate (15
µmol) in 5 ml of methylene chloride at 25 ЊC under argon atmos-
phere was added dropwise a solution of diethyl diazomalonate (3.0
mmol) in 9 ml of methylene chloride for 10 h via syringe pump. The
reaction mixture was concentrated and separated by column
chromatography on silica gel (230–400 mesh, 3 cm × 20 cm, solvent:
EtOAc–n-hexane = 1:5) to give the cyclopropanated glycal 2b (595.2
mg, 80%, >98% de) as a pale yellow oil; [α]D20 ϩ3.85 (c 1, CHCl3);
νmax(film)/cmϪ1 3017, 2951, 2860, 1756, 1725, 1368, 1130 and 841;
δH(300 MHz; CDCl3; Me4Si) 1.03 (9H, s, Me3CSi), 1.30 (6H, tt,
2 × CO2CH2CH3), 1.62 (1H, m, H-2), 1.93 (2H, m, H-3), 3.77 (3H,
m, H-4,5), 4.13 (1H, d, J 4.2, H-1), 4.95 (4H, qq, 2 × CO2CH3CH3)
and 7.33–7.67 (10H, m, (C6H5)2Si); δC(75 MHz; CDCl3; Me4Si) 14.0
(s), 14.5 (q), 14.6 (q), 19.6 (3 × q), 26.7 (d), 33.6 (t), 53.3 (s), 58.9 (t),
61.6 (t), 62.3 (d), 66.3 (t), 71.1 (d), 127.5–135.6 (Ph2Si), 170.6 (s) and
170.7 (s); HRMS m/z (EI) calc’d. for C28H36O6Si (Mϩ): 496.2281;
found: 496.2269.
Acknowledgements
This work was supported by the Center for Biofunctional
Molecules, Korea Science and Engineering Foundation.
References and notes
1 (a) A. Matsuda, A. Azuma, Y. Nakajima, K. Takenuki, A. Dan,
T. Iino, Y. Yoshimura, N. Minakawa, M. Tanaka and T. Sasaki,
in Nucleosides and Nucleotides as Antitumor and Antiviral Agents,
ed. C. K. Chu and D. C. Baker, Plenum Press, New York, 1993, pp.
1–22 and references therein; (b) H. Awano, S. Shuto, M. Baba, T.
Kira, S. Shigeta and A. Matsuda, Bioorg. Med. Chem. Lett., 1994, 4,
367.
10 Major byproduct was identified as 1,3-bis(2Ј-diethoxycarbonyl)-
methyluridine nucleosides by 1H NMR spectroscopy.
11 To a mixture of nucleobase (0.4 mmol) and cyclopropanated glycal
(0.2 mmol) in 2 ml of acetonitrile was added N,O-bis(trimethyl-
silyl)acetamide (0.88 mmol) at 25 ЊC under argon atmosphere. After
stirring for 1 h, the clear solution was treated with methanesulfonic
acid (0.2 mmol) at this temperature and stirred until the reaction was
2 W. A. van der Donk, G. Yu, D. J. Silva, J. Stubbe, J. R. McCarthy,
3240
J. Chem. Soc., Perkin Trans. 1, 1999, 3239–3241