10.1002/anie.201912605
Angewandte Chemie International Edition
COMMUNICATION
K. Junge, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 15364–15368; c)
V. Papa, J. R. Cabrero-Antonino, E. Alberico, A. Spanneberg, K. Junge,
H. Junge, M. Beller Chem. Sci. 2017, 8, 3576–3585.
of enantioselectivity (90–99%). Its broad scope and functionality
tolerance make it appealing for the reduction of extensively
functionalized ketones of biological and medicinal interest. The
high enantioselection derives from attractive CH/π interactions
between the catalyst and the substrate. A mechanistic study is
currently ongoing and its results will be reported in due course.
[9]
a) F. Kallmeier, T. Irrgang, Th. Dietel, R., Angew. Chem. Int. Ed. 2016,
55, 11806–11809; b) F. Freitag, T. Irrgang, R. Kempe, J. Am. Chem.
Soc. 2019, 141, 11677–11685.
[10] a) N. A. Espinosa-Jalapa, A. Nerush, L. J. W. Shimon, G. Leitus, L.
Avram, Y. Ben-David, D. Milstein, Chem. Eur. J. 2017, 23, 5934–5938;
b) A. Kumar, T. Janes, N. A. Espinosa-Jalapa, D. Milstein, Angew.
Chem. Int. Ed. 2018, 130, 12252–12256; c) U. Kumar, A. Kumar, Y.
Ben-David, M. A. Iron, D. Milstein, J. Am. Chem. Soc. 2019, 141,
12962–12966.
Acknowledgements
We thank ETH Zürich for financial support to A.P. (grant ETH-
3617-1).
[11] a) A. Bruneau-Voisine, D. Wang, T. Roisnel, C. Darcel, J.-B. Sortais,
Cat. Comm. 2017, 92, 1–4; b) D. Wei, A. Bruneau-Voisine, T. Chauvin,
V. Dorcet, T. Roisnel, D. A. Valyaev, N. Lugan, J.-B. Sortais Adv. Synth.
Catal. 2018, 360, 676–681; c) R. Buhaibeh, O. A. Filippov, A. Bruneau-
Voisine, J. Willot, C. Duhayon, D. A. Valyaev, N. Lugan, Y. Canac, J.-B.
Sortais, Angew. Chem. Int. Ed. 2019, 58, 6727–6731.
Keywords: Alcohols • Asymmetric catalysis • Hydrogen transfer
• Macrocyclic ligands • Manganese
[12] a) F. Bertini, M. Glatz, N. Gorgas, B. Stöger, M. Peruzzini, L. F. Veiros,
K. Kirchner, L. Gonsalvi, Chem. Sci. 2017, 8, 5024–5029; b) M. Glatz,
B. Stöger, D. Himmelbauer, L. F. Veiros, K. Kirchner ACS Catal. 2018,
8, 4009−4016.
[1]
a) Catalysis Without Precious Metals (Ed.: R. M. Bullock), Wiley-VCH,
Weinheim, 2010; b) R. M. Bullock, Science 2013, 342, 1054–1055; c) B.
Su, Z.-C. Cao, Z.-J. Shi, Acc. Chem. Res. 2015, 48, 886–896; d) P.
Chirik, R. Morris, Acc. Chem. Res. 2015, 48, 2495; e) Non-Noble Metal
Catalysis: Molecular Approaches and Reactions (Eds.: J. M. K.
Gebbink, M.-E. Moret), Wiley-VCH, Weinheim, 2018; f) M. Beller, Chem.
Rev. 2019, 119, 2089; g) P. Gandeepan, T. Muller, D. Zell, G. Cera, S.
Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452; h) T.
Irrgang, R. Kempe, Chem. Rev. 2019, 119, 2525–2549.
[13] R. van Putten, E. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-Castro, M.
Lutz, K. Junge, E. J. M. Hensen, M. Beller, L. Lefort, E. A. Pidko,
Angew. Chem. Int. Ed. 2017, 56, 7531–7534.
[14] A. Kaithal, M. Holscher, W. Leitner, Angew. Chem. Int. Ed. 2018, 57,
13449–13453.
[15] M. B. Widegren, M. L. Clarke, Org. Lett. 2018, 20, 2654–2658.
[16] M. Perez, S. Elangovan, A. Spannenberg, K. Junge, M. Beller,
ChemSusChem 2017, 10, 83–86.
[2]
[3]
a) H. U. Blaser, B. Pugin, F. Spindler, Top. Organomet. Chem. 2012,
42, 65–102; b) C. S. G. Seo, R. H. Morris. Organometallics. 2019, 38,
47–65.
[17] A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B.
Sortais, Org. Lett. 2017, 19, 3656–3659.
a) C. Sui-Seng, F. Freutel, A. J. Lough, R. H. Morris, Angew. Chem. Int.
Ed. 2008, 47, 940–943; b) A. Mikhailine, A. J. Lough, R. H. Morris, J.
Am. Chem. Soc. 2009, 131, 1394–1395; c) J. F. Sonnenberg, N.
Coombs, P. A. Dube, R. H. Morris, J. Am. Chem. Soc. 2012, 134,
5893–5899; d) A. A. Mikhailine, M. I. Maishan, A. J. Lough, R. H. Morris,
J. Am. Chem. Soc. 2012, 134, 12266–12280; e) W. W. Zuo, A. J.
Lough, Y. F. Li, R. H. Morris, Science 2013, 342, 1080–1083; f) W. W.
Zuo, D. E. Prokopchuk, A. J. Lough, R. H. Morris, ACS Catal. 2016, 6,
301–314; g) K. Z. Demmans, C. S. G. Seo, A. J. Lough, R. H. Morris,
Chem. Sci. 2017, 8, 6531–6541.
[18] O. Martinez-Ferraté, C. Werlé, G.Franció, W. Leitner, ChemCatChem
2018, 10, 4514–4518.
[19] M. B. Widegren, G. J. Harkness, A. M. Z. Slawin, D. B. Cordes, M. L.
Clarke, Angew. Chem. Int. Ed. 2017, 56, 5825–5828.
[20] M. Garbe, K. Junge, S.Walker, Z.Wei, H. Jiao, A. Spannenberg, S.
Bachmann, M. Scalone, M. Beller, Angew. Chem. Int. Ed. 2017, 56,
11237.
[21] L. Zhang, Y. Tang, Z. Han, K. Ding, Angew. Chem. Int. Ed. 2019, 58,
4973–4977.
[4]
a) P. O. Lagaditis, P. E. Sues, J. F. Sonnenberg, K. Y. Wan, A. J.
Lough, R. H. Morris, J. Am. Chem. Soc. 2014, 136, 1367–1380; b) J. F.
Sonnenberg, A. J. Lough, R. H. Morris, Organometallics 2014, 33,
6452–6465; c) A. Zirakzadeh, K. Kirchner, A. Roller, B. Stöger, M.
Widhalm, R. H. Morris, Organometallics 2016, 35, 3781–3787; d) J. F.
Sonnenberg, K. Y. Wan, P. E. Sues, R. H. Morris, ACS Catal. 2017, 7,
316–326; e) S. A. M. Smith, P. O. Lagaditis, A. Lüpke, A. J. Lough, R.
H. Morris, Chem. Eur. J. 2017, 23, 7212–7216.
[22] A. Passera, A. Mezzetti, Adv. Synth. Catal. 2019, 361, 4691–4706.
[23] A. Zirakzadeh, S. R. M. M. de Aguiar, B. Stoger, M. Widhalm, K.
Kirchner, ChemCatChem 2017, 9, 1744–1748.
[24] K. Z. Demmans, M. E. Olson, R. H. Morris, Organometallics 2018, 37,
4607–4618.
[25] Additionally, the following papers describe catalytic systems formed in
situ from [MnBr(CO)5] and a chiral ligand: a) D. Wanga, A. Bruneau-
Voisine, J.-B. Sortais, Cat. Comm. 2018, 105, 31–36; b) J.
Schneekönig, K. Junge, M. Beller Synlett 2019, 30, 503–507; c) R. van
Putten, G. A. Filonenko, A. G. de Castro, C. Liu, M. Weber, C. Müller,
L. Lefort, E. Pidko, Organometallics 2019, 38, 3187−3196; d) F. Ling, H.
Hou, J. Chen, S. Nian, X. Yi, Z. Wang, D. Song, W. Zhong, Org. Lett.
2019, 21, 3937−3941.
[26] Line broadening was observed in 1H NMR spectrum, probably due to
the quadrupole moment of 55Mn, as already observed (see, for example,
references [9], [19–22], and [24]). The signals did not sharpen upon
lowering the temperature.
[5]
a) R. Bigler, A. Mezzetti, Org. Lett. 2014, 16, 6460–6463; b) R. Bigler,
R. Huber, A. Mezzetti, Angew. Chem. Int. Ed. 2015, 54, 5171–5174; c)
R. Bigler, A. Mezzetti, Org. Process Res. Dev. 2016, 20, 253–261; d) R.
Bigler, R. Huber, M. Stöckli, A. Mezzetti, ACS Catal. 2016, 6, 6455–
6464; e) L. De Luca, A. Mezzetti, Angew. Chem. Int. Ed. 2017, 56,
11949–11953; e) L. De Luca, A. Passera, A. Mezzetti, J. Am. Chem.
Soc. 2019, 141, 2545–2556.
[6]
a) R. Huber, A. Passera, A. Mezzetti, Organometallics 2018, 37, 396–
405; b) R. Huber, A. Passera, A. Mezzetti, Adv. Synth. Catal. 2018, 360,
2900–2913; c) R. Huber, A. Passera, A. Mezzetti, ChemComm 2019,
55, 9251–9266.
[27] a) The macrocycle is assumed to have Δ helicity (as defined by the
method of the oriented skew lines)[5f,27b] and both stereogenic N atoms
of the ligand in the R configuration by analogy to the X-ray structure of
iron(II) analogues [Fe(L)2(1)](BF4)2 (L= NCMe, CN-1-adamantyl).[5d]
According to DFT calculations, the Λ isomer is less stable than the Δ
isomer by ca. 30 kcal mol–1. The inversion of the N stereocenters
increases the energy by more than 10 kcal mol–1, and the trans isomer,
which is ruled out by 31P NMR spectroscopy, is higher in energy by ca.
[7]
[8]
M. Garbe, Z. Wei, B. Tannert, A. Spannenberg, H. Jiao, S. Bachmann,
M. Scalone, K. Junge, M. Beller, Adv. Synth. Catal. 2019, 361, 1913–
1920.
a) S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W.
Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016,
138, 8809–8814; b) S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg,
4
This article is protected by copyright. All rights reserved.