C O M M U N I C A T I O N S
Table 1. Comparison of Solution-Processed Squaraine:PCBM BHJ
diodes with 1:1 blend ratios spin-coated from ODCB than from
CHCl3, and with lower leakage currents, presumably reflecting the
superior film quality. We also fabricated and evaluated OPV cells
using 2 and PCBM; efficiencies are somewhat lower (∼0.9%) than
devices prepared with 1 (Table 1), however trends are similar.
In summary, we report the fabrication and initial characterization
of BHJ solar cells based, for the first time, on squaraine derivatives
as molecular donors and PCBM as the acceptor. These devices,
solution-processed in air, exhibit some of the highest PCEs reported
for small molecule OPVs (cf., anthradithiophene/fullerene )
1.0%,14a phenyl-core thiophene dendrimers ) 1.3%,14b star-shaped
derivatives ) 1.3%14c). Studies are currently underway to better
define and optimize processing/microstructure/photovoltaic response
relationships.
Photovoltaic Cellsa
active layer
[wt:wt]
solvent/
Ta
d
[nm]
Jsc
[mA/cm2]
Voc
[V]
FF
[%]
η
[%]
1/PCBM (1:1)
1/PCBM (1:1)
1/PCBM (1:1)
1/PCBM (1:1)
1/PCBM (1:1)
1/PCBM (1:1)
1/PCBM (1:3)
1/PCBM (2:1)
1/PCBM (1:1)
1/PCBM (1:3)
2/PCBM (1:1)
2/PCBM (1:1)
2/PCBM (1:3)
ODCB/na
ODCB/70
ODCB/70
ODCB/70
ODCB/na
ODCB/70
ODCB/na
ODCB/na
CHCl3/na
CHCl3/na
ODCB/na
ODCB/70
CHCl3/na
140
140
100
50
30
30
30
140
30
1.85
2.35
2.65
2.93
3.10
3.01
3.89
0.88
3.24
5.70
1.31
1.56
4.72
0.58
0.60
0.60
0.59
0.64
0.61
0.60
0.56
0.62
0.62
0.58
0.59
0.59
31
32
34
35
39
36
32
27
32
35
30
31
32
0.33
0.45
0.54
0.61
0.77
0.66
0.75
0.13
0.64
1.24
0.23
0.29
0.89
30
140
140
30
Acknowledgment. We thank ONR (N00014-08-10923) and the
NSF US-Europe Program (DMR-0353831) for support of this
research, and the Northwestern U. NSF MRSEC (DMR-0520513)
for providing characterization facilities.
a The general structure of devices is ITO/PEDOT:PSS/Sq:PCBMblend/
LiF/Al, with ∼6 mm2 illuminated areas. Ta ) annealing temperature (°C);
na: not annealed. Otherwise annealing is for 1 h.
Supporting Information Available: Synthetic procedures for 1 and
2, device fabrication and characterization details, optical spectra of
blends, and film AFM images. This material is available free of charge
References
(1) (a) Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47,
58. (b) Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K.-Y. AdV.
Mater. 2008, 20, 2376. (c) Coakley, K. M.; McGehee, M. D. Chem. Mater.
2004, 16, 4533.
(2) (a) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante,
M.; Heeger, A. J. Science 2007, 317, 222. (b) Hoth, C. N.; Choulis, S. A.;
Schilinsky, P.; Brabec, C. J. AdV. Mater. 2007, 19, 3973. (c) Li, G.;
Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat.
Mater. 2005, 4, 864.
Figure 2. (A) J-V response of 1:PCBM BHJ OPV devices as a function
of D:A ratio; 1:1 ratio from ODCB (140 nm, black line), 1:1 ratio from
ODCB (30 nm, red line), 1:3 ratio from CHCl3 (140 nm, pink line), and
1:3 ratio from CHCl3 (30 nm, blue line). (B) Dark current measurements
for 1:1 ratio films from ODCB (30 nm, red line), 1:3 ratio from CHCl3
(140 nm, pink line), and 1:3 ratio from CHCl3 (30 nm, blue line).
(3) (a) Brumbach, M.; Placencia, D.; Armstrong, N. R. J. Phys. Chem. C 2008,
112, 3142. (b) Rand, P. B.; Genoe, J.; Heremans, P.; Poortmans, J. Prog.
PhotoVolt: Res. Appl. 2007, 15, 659. (c) Yoo, S.; Potscavage, W. J., Jr.;
Domercq, B.; Han, S.-H.; Li, T.-D.; Jones, S. C.; Szoszkiewicz, R.; Levi, D.;
Riedo, E.; Marder, S. R.; Kippelen, B. Solid-State Electron. 2007, 51, 1367.
(4) Squaraine synthesis reviews: (a) Schmidt, A. H. Synthesis 1980, 961. (b)
Sprenger, G. E.; Ziegenbein, W. Angew. Chem., Int. Ed. Engl. 1968, 7, 530.
(5) (a) Law, K. Y. Chem. ReV. 1993, 93, 449. (b) Law, K. Y.; Bailey, F. C. J.
Org. Chem. 1992, 57, 3278. (c) Law, K. Y. J. Phys. Chem. 1987, 91, 5184.
(6) (a) Chen, C.; Marder, S. R.; Cheng, L. T. J. Am. Chem. Soc. 1994, 116,
3117. (b) Chen, C.-T.; Marder, S. R.; Cheng, L. T. J. Chem. Soc., Chem.
Commun. 1994, 259. (c) Beverina, L.; Crippa, M.; Salice, P.; Ruffo, R.;
Ferrante, C.; Fortunati, I.; Signorini, R.; Mari, C.; Bozio, R.; Facchetti,
A.; Pagani, G. Chem. Mater. 2008, 20, 3242, and references therein.
(7) (a) Yum, J.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nu¨esch, F.; De
Angelis, F.; Gra¨tzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008,
129, 10320. (b) Liang, K. N.; Law, K. Y.; Whitten, D. G. J. Phys. Chem.
1995, 99, 16704. (c) Piechowski, A. P.; Bird, G. R.; Morel, D. L.; Stogryn,
E. L. J. Phys. Chem. 1984, 88, 934. (d) Merrit, V. Y.; Hovel, H. J. Appl.
Phys. Lett. 1976, 29, 414.
(8) (a) Beverina, L.; Crippa, M.; Landenna, M.; Ruffo, R.; Salice, P.; Silvestri,
F.; Versari, S.; Villa, A.; Ciaffoni, L.; Collini, E.; Ferrante, C.; Bradamante,
S.; Mari, C. M.; Bozio, R.; Pagani, G. A. J. Am. Chem. Soc. 2008, 130,
1894. (b) Beverina, L.; Abbotto, A.; Landenna, M.; Cerminara, M.; Tubino,
R.; Meinardi, F.; Bradamante, S.; Pagani, G. A. Org. Lett. 2005, 7, 4257.
(9) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.;
Zhao, J.; Zang, L. J. Am. Chem. Soc. 2006, 128, 7390.
(10) (a) Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks,
T. J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2783. (b) Hains, A. W.;
Marks, T. J. Appl. Phys. Lett. 2008, 92, 023504.
nesses ∼0.35 nm (see Supporting Information). Initial OPV studies
employed squaraine 1, spin-coating the blend from ODCB in air. With
140 nm thick films, Jsc is low, probably reflecting limited charge
mobility, in accord with TFT-derived mobilities, µh ≈ 10-4-10-5 cm2
V-1 s-1.11 By reducing the solution concentration and therefore the
film thickness, OPV performance can be enhanced, with ∼30 nm films
increasing Jsc from 1.85 to 3.10 mA/cm2 and PCE from 0.33% to
0.77% (Table 1, Figure 2A).
The literature suggests that BHJ active layer thermal annealing
can optimize film phase separation/microstructural order and thereby
OPV performance.12 For the present materials, optimum annealing
conditions are 70 °C/1 h as evidenced by the increased phase
separation (AFM Figures S1-S4). As in MDMO-PPV/PCBM solar
cells,13 enhancing carrier mobility by adjusting the donor:acceptor
ratio also contributes to enhanced PCEs. In the present study,
devices fabricated with 1:3 1:PCBM ratios exhibit significant
increases in Jsc (to 3.89 mA/cm2), with PCE ) 0.75%. In contrast,
devices with a 2:1 ratio exhibit decreases in both short circuit current
and PCE (Table 1). Spin-casting the 1:3 1:PCBM blend from CHCl3
rather than ODCB solutions yields a maximum PCE of 1.24%, with
a short circuit current of 5.70 mA/cm2, 1.5 times higher than the
ODCB result, tentatively ascribed to the microstructure evolution
effects of more rapid film growth and drying.
(11) (a) TFT measurement performed in our laboratory on Si-SiO2 substrates
with top Au source/drain contacts. (b) Shirota, Y.; Kageyama, H. Chem.
ReV. 2007, 107, 953.
(12) (a) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. AdV. Funct. Mater. 2003,
13, 85. (b) Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S. Appl. Phys. Lett.
2001, 78, 841–843.
(13) Sheenan, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.;
Hummelen, J. C. AdV. Funct. Mater. 2001, 14, 865.
That PCE values increase with decreasing thickness is consistent
with the higher observed short circuit currents for thinner films.
The same effect is observed on changing the 1:PCBM ratio. The
EQE (external quantum efficiency) for the most efficient devices
peaks at ∼20% @ 750 nm, averaging ∼10% in the 400-800 nm
region. The dark data in Figure 2B indicate smaller rectification in
(14) (a) Lloyd, M. T.; Mayer, A. C.; Subramanian, S.; Mourey, D. A.; Herman,
D. J.; Bapat, A. V.; Anthony, J. E.; Malliaras, G. G. J. Am. Chem. Soc.
2007, 129, 9144. (b) Kopidakis, N.; Mitchell, W. J.; Lagemaat, J. V. d.;
Ginley, D. S.; Rumbles, G.; Shaheen, S. E. Appl. Phys. Lett. 2006, 89,
103524. (c) Chang, H.; Qingguo, H.; Yuanping, Y.; Guanglong, W.;
Fenglian, B.; Zhigang, S.; Yongfang, L. J. Mater. Chem. 2008, 18, 4085.
JA8067879
9
J. AM. CHEM. SOC. VOL. 130, NO. 52, 2008 17641