of organic reactions,6 such as nucleophilic-addition reactions,7
radical-addition reactions,8 [2+2] and [2+4] cycloaddition
reactions,9 and sigmatropic rearrangements.10 Herein, we de-
scribe a cascade synthesis of substituted pyridines via the
ketenimine intermediates.
A Cascade Approach to Pyridines from
2-Azido-2,4-dienoates and r-Diazocarbonyl
Compounds
Zheng-Bo Chen, Deng Hong, and Yan-Guang Wang*
In the context of our studies aimed for the development of
ketenimine-participated synthetic methods,11 we have focused
on the reaction of 2-azido-2,4-dienoates and R-diazocarbonyl
compounds. When the solution of ethyl 2-azido-5-phenylpenta-
2,4-dienoate (1a), 2-diazo-1-phenylethanone (2a), and triph-
enylphosphine in toluene was refluxed for 10 h, ethyl 6-benzyl-
5-phenylpicolinate (3a) was produced in 10% yield. In an
attempt to improve the yield, subsequent work focused on
optimization of the reaction conditions. We then examined the
reaction temperature and several other solvents such as xylene,
tetrahydrofuran, 1,2-dichloroethane, and CH3CN. The best yield
(80%) was obtained when the reaction was performed in xylene
at 140 °C for 2 h (Table 1, entry 1).
Department of Chemistry, Zhejiang UniVersity,
Hangzhou 310027, China
ReceiVed September 26, 2008
With the suitable reaction conditions in hand, we examined
the scope of this process using various 2-azido-2,4-dienoates
112 and R-diazoketones 2.13 As shown in Table 1, all of the
reactions generated pyridines 3 in good yields (70-90%).
Furthermore, the electron-rich azides (Table 1, entries 11-14)
A one-pot synthesis of substituted pyridines via a cascade
reaction of 2-azido-2,4-dienoates with R-diazocarbonyl com-
pounds and triphenylphosphine is reported. The process
involves a Staudinger-Meyer reaction, a Wolff rearrange-
ment, an aza-Wittig reaction, and an electrocyclic ring-
closure. The procedure is general and efficient. The substrates
are readily available.
(4) For the synthesis of substituted pyridines via multicomponent reactions,
see recent examples: (a) Sasada, T.; Sakai, N.; Konakahara, T. J. Org. Chem.
2008, 73, 6905–6908. (b) Senaiar, R. S.; Young, D. D.; Deiter, A. Chem.
Commun. 2006, 1313–1315. (c) Evdokimov, N.; Magedov, I. V.; Kireev, A. S.;
Kornienko, A. Org. Lett. 2006, 8, 899–902. (d) Dash, J.; Lechel, T.; Reissig,
H.-U. Org. Lett. 2007, 9, 5541–5544. (e) Ranu, B. C.; Jana, R.; Sowmiah, S. J.
Org. Chem. 2007, 72, 3152–3154. (f) Zhu, S.-L.; Ji, S.-J.; Su, X.-M.; Sun, C.;
Liu, Y. Tetrahedron Lett. 2008, 49, 1777–1781.
(5) For the synthesis of substituted pyridines via 6π-electrocyclization of
azahexa-1,3,5-trienes, see: (a) Barluenga, J.; Ferrero, M.; Palacios, F. J. Chem.
Soc., Perkin. Trans. 1 1990, 2193–2197. (b) Molina, P.; Pastor, A.; Vilaplana,
M. J. Tetrahedron 1993, 49, 7769–7778. (c) Palacios, F.; Herra´n, E.; Alonso,
C.; Rubiales, G.; Lecea, B.; Ayerbe, M.; Cossio, F. P. J. Org. Chem. 2006, 71,
6020–6030.
(6) For a recent review, see: Perst, H. Sci. Synth. 2006, 23, 781–897.
(7) (a) Llamas, K.; Owens, M.; Blakeley, R. L.; Zerner, B. J. Am. Chem.
Soc. 1986, 108, 5543–5548. (b) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc.
2005, 127, 2038–2039. (c) Fleming, F. F.; Wei, G. Q.; Zhang, Z. Y.; Steward,
O. W. Org. Lett. 2006, 8, 4903–4906.
Substituted pyridines are an important class of compounds
due to their abundance in biologically important natural and
synthetic substances and their utilities as intermediates in
synthetic chemistry.1 Not surprisingly, a large amount of work
has been devoted to the development of methods to provide
these products in a straightforward fashion,2 the majority of
which involve the transition metal mediated cycloadditions,3
one-pot multicomponent reactions,4 and 6π-electrocyclization
of the in situ generated azahexa-1,3,5-trienes.5 Ketenimines are
nitrogenated heterocumulenes, which can participate in a variety
(8) (a) De Vries, L. J. Org. Chem. 1973, 38, 4357–4362. (b) Russell, G. A.;
Chen, P.; Yao, C.-F.; Kim, B. H. J. Am. Chem. Soc. 1995, 117, 5967–5972. (c)
Kim, S. S.; Liu, B.; Park, C. H.; Lee, K. H. J. Org. Chem. 1998, 63, 1571–
1573.
(9) (a) Singer, L. A.; Davis, G. A. J. Am. Chem. Soc. 1967, 89, 598–605.
(b) Dondoni, A.; Battaglia, A.; Bernardi, F.; Giorgianni, P. J. Org. Chem. 1980,
´
(1) For reviews, see: (a) Babu, P. A.; Narasu, M. L.; Srinivas, K. ARKIVOC
2007, 247–265. (b) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435–446. (c) O’Hagan,
D. Nat. Prod. Rep. 1997, 14, 637–651. (d) Joule, J. A.; Mills, K. In Heterocyclic
Chemistry, 4th ed.; Blackwell: Oxford, UK, 2000.
(2) For reviews, see: (a) Henry, G. D. Tetrahedron 2004, 60, 6043–6061.
(b) Varela, J. A.; Saa, C. Chem. ReV. 2003, 103, 3787–3802. (c) Ciufolini, M. A.;
Chan, B. K. Heterocycles 2007, 74, 101–124.
45, 3773–3778. (c) Alajar´ın, M.; Bonillo, B.; Sa´nchez-Andrada, P.; Vidal, A.;
Bautista, D. J. Org. Chem. 2007, 72, 5863–5866. (d) Fabian, W. M. F.; Janoschek,
R. J. Am. Chem. Soc. 1997, 119, 4253–4257. (e) Alonso-Go´mez, J. L.; Pazos,
Y.; Navarro-Va´zquez, A.; Lugtenburg, J.; Cid, M. M. Org. Lett. 2005, 7, 3773–
´
3776. (f) Alajar´ın, M.; Ort´ın, M.-M.; Sa´nchez-Andrada, P.; Vidal, A.; Bautista,
D. Org. Lett. 2005, 7, 5281–5284.
(10) (a) Alajar´ın, M.; Bonillo, B.; Ort´ın, M.-M.; Sa´nchez-Andrada, P.; Vidal,
A Org. Lett. 2006, 8, 5645–5648. (b) Lee, K.-W.; Horowitz, N.; Ware, J.; Singer,
´
(3) For the transition metal-catalyzed synthesis of substituted pyridines, see
recent examples: (a) Varela, J. A.; Castedo, L.; Saa`, C. J. Org. Chem. 2003, 68,
8595–8598. (b) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am.
Chem. Soc. 2005, 127, 5030–5031. (c) Tanaka, R.; Yuza, A.; Watai, Y.; Suzuki,
D.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7774–
7780. (d) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2007, 9, 505–
508. (e) Kase, K.; Goswami, A.; Ohtaki, K.; Tanabe, E.; Saino, N.; Okamoto,
S. Org. Lett. 2007, 9, 931–934. (f) Trost, B. M.; Gutierrez, A. C. Org. Lett.
L. A. J. Am. Chem. Soc. 1977, 99, 2622–2627. (c) Walters, M. A. J. Am. Chem.
Soc. 1994, 116, 11618–11619.
(11) (a) Yang, Y. Y.; Shou, W. G.; Hong, D.; Wang, Y. G. J. Org. Chem.
2008, 73, 3574–3577. (b) Yang, Y. Y.; Shou, W. G.; Chen, Z. B.; Hong, D.;
Wang, Y. G. J. Org. Chem. 2008, 73, 3928–3930. (c) Cui, S. L.; Wang, J.;
Wang, Y. G. Org. Lett. 2008, 10, 1267–1269. (d) Cui, S. L.; Wang, J.; Wang,
Y. G. Org. Lett. 2007, 9, 5023–5025. (e) Cui, S. L.; Lin, X. F.; Wang, Y. G.
Org. Lett. 2006, 8, 4517–4520.
`
2007, 9, 1473–1476. (g) Barluenga, J.; Ferna`ndez-Rodr´ıguez, M. A.; Garcia-
Garcia, P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764–2765. (h) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 3645–3651.
(i) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2008, 10, 325–
328. (j) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592–4593.
(k) Liu, S. B.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 6918–6919.
(12) 2-Azido-2,4-dienoates were readily prepared by aldol condensation of
R,ꢀ-unsaturated aldehydes and ethyl azidoacetate. For the method, see: (a) Henn,
L.; Hickey, D. M. B.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans.
1 1984, 2189–2196. (b) Bra¨se, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
Chem., Int. Ed. 2005, 44, 5188–5240.
10.1021/jo802159g CCC: $40.75
Published on Web 12/09/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 903–905 903