either toxic, have poor functional group compatibility, or are
sensitive to air and moisture.
Copper(II) Acetate-Catalyzed Addition of
Arylboronic Acids to Aromatic Aldehydes
Organboron reagents enjoy great prestige due to their
advantages of stability to air or moisture and good functional
group tolerance.3 In 1997, Miyaura and co-workers reported a
rhodium-catalyzed addition of aryl- and alkenyl-boronic acids
to aldehydes4 and enones.5 Since then, various synthetic methods
by rhodium-catalyzed6 and palladium-catalyzed7 approaches for
such transformations have been developed. In our previous
report, we have developed a palladium-catalyzed arylation of
aldehydes to produce secondary alcohols in good yields.8
However, palladium is very expensive compared with copper.
Furthermore, in our previous report, palladium-catalyzed alde-
hyde arylations did not tolerate bromo or formyl groups in the
substrates. We report herein that diarylmethanols can be
prepared successfully by the addition of arylboronic acids to
aromatic aldehydes with excellent yields in the presence of
copper(II) acetate.
Hanmei Zheng,† Qiang Zhang,† Jiuxi Chen,†
Miaochang Liu,† Shuanghua Cheng,† Jinchang Ding,*,†,‡
Huayue Wu,*,† and Weike Su†,§
College of Chemistry and Materials Engineering,
Wenzhou UniVersity, Wenzhou 325027, P. R. China,
Wenzhou Vocational & Technical College,
Wenzhou 325035, P. R. China, and College of
Pharmaceutical Sciences, Zhejiang UniVersity of Technology,
Zhejiang, Key Laboratory of Pharmaceutical Engineering,
Hangzhou 310014, P. R. China
djc@wzVtc.cn; huayuewu@wzu.edu.cn
ReceiVed October 6, 2008
Initially, we chose the addition of phenylboronic acid 2e to
4-nitrobenzaldehyde 1a as a model reaction using Cu(OAc)2 ·
H2O as the copper source, NaOAc as the base, and toluene as
the solvent. Considering ligands always play important roles in
metal-catalyzed chemistry,9 we first focused on ligand screening
(Chart 1). Through screening, we found that the electronic nature
and steric demands of the arylphosphine ligands played impor-
tant roles. For example, use of monodentate phosphine ligands
resulted in moderate yields (Table 1, L6-L11), and the
hindrance in the ligands or electron-poor ligands had poor
catalytic activity (Table 1,L12-L16). Bidentate phosphines L1
and L2 with smaller bite angle than L5 stopped the reaction.
To our delight, bidentate phosphines with large bite angles such
as L4, L5, and L6 were effective for this transformation. In
addition, we examined the aminophosphine ligands (Table 1,
A novel copper-catalyzed protocol for the synthesis of
carbinol derivatives has been developed. In the presence of
copper(II) acetate and dppf, carbinol derivatives were
prepared by the addition of arylboronic acids to aromatic
aldehydes in good to excellent yields. Moreover, the rigorous
exclusion of air or moisture is not required in these
transformations.
Diarylmethanols consist of an important building block in
the synthesis of natural products and pharmacological active
compounds as well as material science target molecules.1
General approaches involve the reduction of ketones and
addition of organometallic reagents to aldehydes. In recent years,
great attention has been paid to the addition of organometallic
reagents to aldehydes for the synthesis of diarylmethanols, such
as organolithium,2a,d organomagnesium,2e,g organotin,2h,i and
organozinc.2l,m However, these organometallic reagents are
(3) (a) Suzuki, A. Acc. Chem. Res. 1982, 15, 178. (b) Miyaura, N.; Suzuki,
A. Chem. ReV. 1995, 95, 2457. (c) Suzuki, A. J. Organomet. Chem. 1998, 576,
147. (d) Darses, S.; Genet, J. P. Eur. J. Org. Chem. 2003, 4313.
(4) Sakai, M.; Euda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279.
(5) (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics. 1997, 16, 4229.
(b) Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1998, 39, 8479.
(6) (a) Duan, H. F.; Xie, J. H.; Shi, W. J.; Zhang, Q.; Zhou, Q. L. Org. Lett.
2006, 8, 1479. (b) Son, S. U.; Kim, S. B.; Reingold, J. A.; Carpenter, G. B.;
Sweigart, D. A. J. Am. Chem. Soc. 2005, 127, 12238. (c) Pucheault, M.; Darses,
S.; Genet, J. P. Chem. Commun. 2005, 4714. (d) Focken, T.; Rudolph, J.; Bolm,
C. Synthesis 2005, 3, 429. (e) Jagt, R. B. C.; Toullec, P. Y.; Vries, J. G. D.;
Feringa, B. L.; Minnaard, A. J. Org. Biomol. Chem. 2006, 4, 773. (f) Suzuki,
K.; Kondo, K.; Aoyama, T. Synthesis 2006, 1360. (j) Gois, P. M. P.; Trindade,
A. F.; Veiros, L. F.; Andre, V.; Duarte, M. T.; Afonso, C. A. M.; Caddick, S.;
Cloke, F. G. N. Angew. Chem., Int. Ed. 2007, 46, 5750. (h) Gois, P. M. P.;
Trindade, A. F.; Veiros, L. F.; Andre, V.; Duarte, M. T.; Afonso, C. A. M.;
Caddick, S.; Cloke, F. G. N. J. Org. Chem. 2008, 73, 4076.
(7) (a) Gibson, S.; Foster, D. F.; Eastham, G. R.; Tooze, R. P.; Cole, H. D. J.
Chem. Commun. 2001, 779. (b) Yamamoto, T.; Ohta, T.; Ito, Y. Org. Lett. 2005,
7, 4153. (c) Suzuki, K.; Arao, T.; Ishii, S.; Maeda, Y.; Kondo, K.; Aoyama, T.
Tetrahedron Lett. 2006, 47, 5789. (d) He, P.; Lu, Y.; Dong, C. G.; Hu, Q. S.
Org. Lett. 2007, 9, 343. (e) He, P.; Lu, Y.; Hu, Q. S. Tetrahedron Lett. 2007,
48, 5283.
† Wenzhou University.
‡ Wenzhou Vocational & Technical College.
§ Zhejiang University of Technology.
(1) (a) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Chem. ReV. 2006,
35, 454. (b) Fagnou, K.; Lautens, M. Chem. ReV. 2003, 103, 169. (c) Bolm, C.;
Hildebrand, J. P.; Muniz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40,
3284. (d) Darses, S.; Genet, J. P. Eur. J. Org. Chem. 2003, 4313.
(2) (a) Furstner, A. Chem. ReV. 1999, 99, 991. (b) Boudier, A.; Bromm, L. O.;
Bromm, L. M.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414. (c) Bolm,
C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850. (d) Guijarro, D.; Yus, M.
Tetrahedron. 2000, 56, 1135. (e) Boymond, L.; Rottlander, M.; Cahiez, G.;
Knochel, P. Angew. Chem., Int. Ed. 1998, 37, 1701. (f) Abarbri, M.; Dehmel,
F.; Knochel, P. Tetrahedron Lett. 1999, 40, 7449. (g) Lee, J. S.; Velarde, O. R.;
Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem. 2000, 65, 5428. (h) Weber,
B.; Seebach, D. Tetrahedron 1994, 50, 7473. (i) Noyori, R.; Kitamura, M. Angew.
Chem., Int. Ed. 1991, 30, 49. (j) Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org.
Chem. 1997, 62, 444. (k) Bolm, C.; Hermanns, N.; Hildebrand, J. P.; Muniz, K.
Angew. Chem., Int. Ed. 2000, 39, 3465. (l) Ogawa, Y.; Mori, M.; Saiga, A.;
Takagi, K. Chem. Lett. 1996, 1069. (m) Kondo, Y.; Takazawa, N.; Yamazaki,
C.; Sakamoto, T. J. Org. Chem. 1994, 59, 4717.
(8) Qin, C. M.; Wu, H. Y.; Cheng, J.; Chen, X. A.; Liu, M. C.; Zhang, W. W.;
Su, W. K.; Ding, J. C. J. Org. Chem. 2007, 72, 4102.
(9) (a) Tolman, C. A. Chem. ReV. 1977, 77, 313. (b) Braga, A. A. C.; Morgon,
N. H.; Ujaque, G.; Liedos, A.; Maseras, F. J. Organomet. Chem. 2006, 691,
4459. (c) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem.
Soc. 2005, 127, 9298. (d) Barder, T. E.; Walker, S. D.; Martinelli, J. R.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. (e) Kranenburg, M.;
vanderBurgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Organometallics 1995, 14, 3081. (f) Littke, A. F.; Fu, G. C. Angew. Chem., Int.
Ed. 2002, 41, 4176.
10.1021/jo802225j CCC: $40.75
Published on Web 12/09/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 943–945 943