2488
C. S. Leung et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2485–2488
Table 6
ern extensions’ did not overcome well the deficiencies in
Anti-HIV-1 activity (EC50) and cytotoxicity (CC50), lM
performance on the variants. In comparing our computed struc-
tures to crystal structures for related NNRTIs including etravirine
with azine17 rather than azole cores, the former appear to feature
better contact of the western substituted phenyl groups with
Y188 or W229 and less dependence on interaction with Y181.
In conclusion, extension of azole-containing NNRTIs towards
the eastern portion of the binding site has yielded new anti-HIV
agents. The structural range of possibilities is striking arising from
variation of the linker length in, for example, 3f, 3j, 3k, and 3u. MC/
FEP calculations provided structural insights on the complexes and
assisted in the discovery of inhibitors with ca. 10 nM activities to-
wards wild-type HIV-1.
R'
5R''
3
6
F
2
F
O
NH
N
Compound
R0
R00
EC50
CC50
3m
3n
3o
3p
3q
3r
3s
3t
3u
3v
CH2OH
CH2O-4-Pyridinyl
3-Cl
3-Cl
3-Cl
H
3-Cl
3-Cl
3-Cl
3-Br
3-Cl
3-Cl
0.26
90
0.030
0.011
0.013
0.006
0.12
0.031
0.034
0.14
3.8
1.7
7.4
11
21
16
7.5
9.3
8.9
CH2O-4-Pyridinyl-N-oxide
CN
Acknowledgments
CN
O-4-Pyridinyl
O-3-Pyridinyl
O-3-Pyridinyl
4-Pryidinyl
3-Pyridinyl
Gratitude is expressed to the National Institutes of Health
(AI44616, GM32136, GM49551) for support. Receipt of reagents
through the NIH AIDS Research and Reference Reagent Program,
Division of AIDS, NIAID, NIH is also greatly appreciated.
0.073
References and notes
Table 7
Activity (EC50) and cytotoxicity (CC50) in
lM for variant HIV-1 strains
1. Flexner, C. Nat. Rev. Drug Disc. 2007, 6, 959.
2. Kohlstaedt, L. A.; Wang, J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Science 1992,
256, 1783.
Compound
WT
Y181C K103 N/Y181C
3. Smerdon, S. J.; Jager, J.; Wang, J.; Kohlstaedt, L. A.; Chirino, A. J.; Friedman, J. M.;
Rice, P. A.; Steitz, T. A. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3911.
4. De Clerq, E. J. Med. Chem. 2005, 48, 1297.
EC50
CC50
EC50
CC50
EC50
CC50
3k
3o
3p
3q
3r
3s
3u
3v
0.19
21
1.7
7.4
11
21
16
9.3
8.9
>100
>100
>0.1
>0.1
5.0
NA
NA
0.42
2.3
3.2
3.8
6.0
0.7
NA
17
2.7
8.0
9.9
17
16
11
15
>100
>100
>0.1
>0.1
12
NA
ND
NA
7.2
4.5
5.6
NA
0.5
17
2.1
ND
8.9
17
15
9.1
12.5
>100
>100
>0.1
>0.1
0.011
0.013
0.006
0.12
0.031
0.14
0.073
1.4
0.11
5. De Clerq, E. Nat. Rev. Drug Disc. 2007, 6, 1001.
6. (a) Barreiro, G.; Kim, J. T.; Guimaraes, C. R. W.; Bailey, C. M.; Domaoal, R. A.;
Wang, L.; Anderson, K. S.; Jorgensen, W. L. J. Med. Chem. 2007, 50, 5324; (b)
Zeevaart, J. G.; Wang, L.; Thakur, V. V.; Leung, C. S.; Tirado-Rives, J.; Bailey, C.
M.; Domaoal, R. A.; Anderson, K. S.; Jorgensen, W. L. J. Am. Chem. Soc. 2008, 130,
9492.
7. Jorgensen, W. L. Acc. Chem. Res. 2009, 42, 724.
8. Gill, A. L.; Frederickson, M.; Cleasby, A.; Woodhead, S. J.; Carr, M. G.; Woodhead,
A. J.; Walker, M. T.; Congreve, M. S.; Devine, L. A.; Tisi, D.; O’Reilly, M.; Seavers,
L. C. A.; Davis, D. J.; Curry, J.; Anthony, R.; Padova, A.; Murray, C. W.; Carr, R. A.
E.; Jhoti, H. J. Med. Chem. 2005, 48, 414.
9. Tsunoda, T.; Yamamiya, Y.; Itô, S. Tetrahedron Lett. 1993, 34, 1639.
10. Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7727.
d4T
Nevirapine
Evafirenz
Etravirine
NA
0.030
0.005
0.002
0.001
0.010
0.011
11. Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.
12. Undavia, N. K.; Trivedi, P. B. J. Indian Chem. Soc. 1989, 66, 60.
13. Fallon, G. D.; Francis, C. L.; Johansson, K.; Liepa, A. J.; Woodgate, R. C. J. Aust. J.
Chem. 2005, 58, 891.
14. Lin, T. S.; Luo, M. Z.; Liu, M. C.; Pai, S. B.; Dutschman, G. E.; Cheng, Y. C. Biochem.
Pharmacol. 1994, 47, 171.
activity by a factor of 15. Indeed, a similar boost is found for the
CH2O-4-pyridinyl analogs, 3j and 3n, with 3n at 30 nM. However,
the predicted aqueous solubility of 3n from QikProp was below
1 l
M, which is undesirable.7 Thus, the N-oxide 3o was prepared
15. Ray, A. S.; Yang, Z.; Chu, C. K.; Anderson, K. S. Antimicrob. Agents Chemother.
and found to be a potent NNRTI with an EC50 of 11 nM, and with
2002, 46, 887.
a predicted solubility near 10 M. 3r and 3s also showed improve-
l
16. Jorgensen, W. L.; Ruiz-Caro, J.; Tirado-Rives, J.; Basavapathruni, A.; Anderson, K.
S.; Hamilton, A. D. Bioorg. Med. Chem. Lett. 2006, 16, 663.
17. Himmel, D. M.; Das, K.; Clark, A. D., Jr.; Hughes, S. H.; Benjahad, A.; Oumouch,
S.; Guillemont, J.; Coupa, S.; Poncelet, A.; Csoka, I.; Meyer, C.; Andries, K.;
Nguyen, C. H.; Grierson, D. S.; Arnold, E. J. Med. Chem. 2005, 48, 7582.
18. Jorgensen, W. L.; Tirado-Rives, J. J. Comput. Chem. 2005, 26, 1689.
19. Jorgensen, W. L.; Thomas, L. T. J. Chem. Theory Comput. 2008, 4, 869.
20. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118,
11225.
21. Jorgensen, W. L.; Tirado-Rives, J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665.
22. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J.
Chem. Phys. 1983, 79, 926.
23. Michel, J.; Tirado-Rives, J.; Jorgensen, W. L. J. Am. Chem. Soc. 2009, 131, 15403.
24. Jorgensen, W. L.; Jensen, K. P.; Alexandrova, A. N. J. Chem. Theory Comput. 2007,
3, 1987.
ment over 3k and 3l. The structurally novel, linker-less 3u and 3v
were also prepared and show good activity. The cyano analog 3p
was previously the most potent inhibitor in the oxazole series.6b
Addition of the meta-chlorine brings the activity to 6 nM for 3q.
The Y181C and K103N/Y181C variants have been particularly
problematic for NNRTI therapy,1,5 so several of the more potent
NNRTIs were tested against corresponding strains of HIV-1 (Table
7). Low-micromolar activity towards the variants is obtained with
most of the compounds, which is an improvement over 3p.6b The
addition of the chlorine in going from 3p to 3q also helps towards
Y181C, but not with the double mutant. Though interesting alter-
natives to the cyano group in 3p and 3q were discovered, the ‘east-