ORGANIC
LETTERS
2011
Vol. 13, No. 14
3670–3673
Concise Total Synthesis of (ꢀ)-8-
Epigrosheimin
Haishen Yang, Yuzhe Gao, Xiaoxiao Qiao, Longguan Xie, and Xiaohua Xu*
State Key Laboratory of Elemento-organic Chemistry, Nankai University,
Tianjin 300071, China
Received May 17, 2011
ABSTRACT
A highly efficient route was developed to synthesize (ꢀ)-8-epigrosheimin in four steps from aldehyde 2 based on a substrate-controlled method.
The key steps of the synthesis included (1) a stereo- and regioselective allylation addition, (2) an intramolecular translactonization, and (3) an
aldehyde-ene cyclization.
Guaianolides, mostly with a cis-fused hydroazulene core
and a trans-annulated γ-butyrolactone motif in the 5, 7,
5-tricyclic carbon skeleton (Figure 1),1 represent a large
subgroup of naturally occurring sesquiterpene lactones.2
Many of them display a broad biological profile including
strong antitumor, antihelmitic, contraceptive, plant growth-
regulatory, antiinflammatory, and cytostatic properties,3
whichmakestheminterestingleadstructuresfornewdrugs.
While many synthetic approaches have therefore been
developed,4 there are still some challenges in synthesizing
this kind of natural lactone. One of them is the efficient
assembly of the trans-fused γ-butyrolactone ring. Even
though there are a variety of methodologies available for
the synthesis of substituted γ-butyrolactones,5 most of the
reported methods independently introduce the methyl or
methylene group on the lactone unit at a later stage.
In a previous paper, we described a novel strategy for
the total synthesis of (ꢀ)-8-epigrosheimin (1),6 whose en-
antiomer was initially isolated as an amoebicidal and anti-
biotic compound from Crepis virens 20 years ago.7 Recently,
we found that the (ꢀ)-1 displayed promising antitumor
activities (HepG2: IC50 = 6.22 μg/mL; MCF-7: IC50
=
(1) Devreese, A. A.; De Clercq, P. J.; Vandewalle, M. Tetrahedron
Lett. 1980, 21, 4767–4770.
(5) (a) Collins, I. J. Chem. Soc., Perkin Trans. 1 1998, 1869–1888 and
references cited therein. (b) Collins, I. J. Chem. Soc., Perkin Trans. 1
1999, 1377–1395 and references cited therein. (c) Consorti, C. S.; Ebeling, G.
Dupont, J. Tetrahedron Lett. 2002, 43, 753–755. (d) Seitz, M.; Reiser,
O. Curr. Opin. Chem. Biol. 2005, 9, 285–292 and references cited
therein. (e) Ramachandran, P. V.; Pratihar, D. Org. Lett. 2007, 9,
2087–2090. (f) Ramachandran, P. V.; Garner, G.; Pratihar, D. Org.
Lett. 2007, 9, 4753–4756. (g) Elford, T. G.; Ulaczyk-Lesanko, A.;
De Pascale, G.; Wright, G. D.; Hall, D. G. J. Comb. Chem. 2009, 11,
155–168 and references cited therein. (h) Ramachandran, P. V.;
Pratihar, D.; Nair, H. N. G.; Walters, M.; Smith, S.; Yip-Schneider,
M. T.; Wu, H. B.; Schmidt, C. M. Bioorg. Med. Chem. Lett. 2010, 20,
6620–6623. (i) Yanagisawa, A.; Kushihara, N.; Yoshida, K. Org.
Lett. 2011, 13, 1576–1578.
(2) Fraga, B. M. Nat. Prod. Rep. 2010, 27, 1681–1708 and previous
reports in this series.
(3) Ando, M.; Ibayashi, K.; Minami, N.; Nakamura, T.; Isogai, K.;
Yoshimura, H. J. Nat. Prod. 1994, 57, 433–445.
(4) For total synthetic method, see: (a) Zhuzbaev, B. T.; Adekenov,
S. M.; Veselovskii, V. V. Russ. Chem. Rev. 1995, 64, 187–200 and
ꢀ
references cited therein. (b) Carret, S.; Depres, J. P. Angew. Chem.,
Int. Ed. 2007, 46, 6870–6873 and references cited therein. (c) Schall, A.;
Reiser, O. Eur. J. Org. Chem. 2008, 2353–2364 and references cited
therein. (d) Hirose, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2008, 73,
1061–1066. (e) Reboul, I.; Boddaert, T.; Coquerel, Y.; Rodriguez, J. Eur.
J. Org. Chem. 2008, 2008, 5379–5382. Gone, J. R.; Wallock, N. J.;
Lindeman, S.; Donaldson, W. A. Tetrahedron Lett. 2009, 50, 1023–1025.
(g) Elford, T. G.; Hall, D. G. J. Am. Chem. Soc. 2010, 132, 1488–1489.
(h) Navickas, V.; Ushakov, D. B.; Maier, M. E.; Strobele, M.; Meyer,
H. J. Org. Lett. 2010, 12, 3418–3421. For semisynthetic method, see: (i)
Banerjee, A. K.; Vera, W. J.; Gonzalez, N. C. Tetrahedron 1993, 49,
4761–4788 and references cited therein. (j) Yuuya, S.; Hagiwara, H.;
Suzuki, T.; Ando, M.; Yamada, A.; Suda, K.; Kataoka, T.; Nagai, K.
J. Nat. Prod. 1999, 62, 22–30 and references cited therein. (k) Bargues,
V.; Blay, G.; Cardona, L.; Garcia, B.; Pedro, J. R. J. Nat. Prod. 2002, 65,
1703–1706 and references cited therein.
(6) Yang, H.; Qiao, X.; Li, F.; Ma, H.; Xie, L.; Xu, X. Tetrahedron
Lett. 2009, 50, 1110–1112.
(7) Barbetti, P.; Casinovi, C. G.; Santurbano, B.; Longo, R. Collect.
Czech. Chem. Commun. 1979, 44, 3123–3127.
(8) Unpublished results.
(9) The natural enantiomer, (þ)-8-epigrosheimin ([R]20 þ 32.4 (c
D
1.0, CHCl3, lit.7 [R]20D þ 31.5 ( 1 (c 0.1, CHCl3)), was also synthesized,
and its biological activity is under investigation.
r
10.1021/ol201322w
Published on Web 06/15/2011
2011 American Chemical Society