Organic Letters
Letter
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, reaction
progress curves, and X-ray crystal data. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding from UCM (Graduate and Research Council Faculty
Award). Further support was provided by NSF-COINS EEC-
0832819. We thank Dr. Arnold Rheingold and Dr. Curtis
Moore at the UCSD Crystallography Laboratory and Dr.
Alfred D. Bacher at UCLA for generous use of FTIR.
REFERENCES
■
(1) For reviews on NHC organocatalysis, see: (a) Enders, D.;
Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606−5655.
(b) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51,
314−325. (c) Chauhan, P.; Enders, D. Angew. Chem., Int. Ed. 2014,
53, 1485−1487.
(2) Enders, D.; Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79,
1217−1221.
(3) Enders, D.; Kallfass, U. Angew. Chem., Int. Ed. 2002, 41, 1743−
1745.
Figure 4. (a) Possible tautomers of the catalytic intermediate formed
from 4-chlorobenzaldehyde and 4c. (b) X-ray crystal structure of
isolated catalytic intermediate 15.
and single-crystal X-ray diffraction, revealing that it is in fact
the benzylic alcohol carbene-aldehyde adduct 15.
Isolation and identification of 15 allows us to further refine
our mechanistic interpretation. This intermediate is stable in
solid form but can be reverted to free carbene and aldehyde
on treatment with base. Treating 15 solely with oxidant 12 or
with DDQ to allow direct benzylic oxidation were all
unsuccessful. However, subjecting 15 to the reaction
conditions including KOtBu, MeOH, and 12 did result in
ester formation (Scheme 5a). In addition, 15 can be used to
convert 4-nitrobenzaldehyde to the corresponding ester,
demonstrating its competence as a precatalyst for further
reaction (Scheme 5b).
(4) Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873−3876.
(5) Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021−
6024.
(6) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406−
16407.
(7) Kerr, M. S.; Alaniz, J. R. De; Rovis, T. J. Org. Chem. 2005, 70,
5725−5728.
(8) Mattson, A. E.; Bharadwaj, A. R.; Zuhl, A. M.; Scheidt, K. A. J.
Org. Chem. 2006, 71, 5715−5724.
(9) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4558−
4559.
(10) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G.
Scheme 5. Catalytic Activity of Isolated Intermediate 15
Angew. Chem. 2010, 122, 4869−4872.
(11) Bouffard, J.; Keitz, B. K.; Tonner, R.; Lavallo, V.; Guisado-
Barrios, G.; Frenking, G.; Grubbs, R. H.; Bertrand, G. Organo-
metallics 2011, 30, 2617−2627.
(12) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302−1315.
(13) Tseng, M.; Cheng, H.; Shen, M.; Chu, Y. Org. Lett. 2011, 13,
4434−4437.
(14) Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639−712.
(15) Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192−197.
(16) Alwarsh, S.; Ayinuola, K.; Dormi, S. S.; McIntosh, M. C. Org.
Lett. 2013, 15, 3−5.
(17) Berkessel, A.; Elfert, S.; Etzenbach-Effers, K.; Teles, J. H.
Angew. Chem., Int. Ed. 2010, 49, 7120−7124.
Together these results confirm that the esterification likely
proceeds first via nucleophilic capture of the aldehyde by the
mesoionic carbene to give II, followed by proton transfer to
give the Breslow-like intermediate III and subsequent
oxidation, instead of a direct oxidation pathway from II to IV.
In conclusion, we have demonstrated the first report of
organocatalytic activity for mesoionic 1,2,3-triazolyl carbenes.
We have identified the likely resting state and have isolated a
catalytic intermediate, proving that these carbenes act as
nucleophilic organocatalysts.
D
dx.doi.org/10.1021/ol501458p | Org. Lett. XXXX, XXX, XXX−XXX