C O M M U N I C A T I O N S
Scheme 1a
Postdoctoral Fellowship. K.L.M. thanks Argonne National Labora-
tory for a Laboratory-Grad Fellowship.
Supporting Information Available: Experimental procedures for
the synthesis of 1, 2, 3, 5, and 6. X-ray crystallographic files for 5 in
1
CIF format. PXRD, TGA, and sorption isotherm data. H NMR data
on residual solvent content of 3 as a function of activation method.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Recent reviews: (a) Collins, D. J.; Zhou, H.-C. J. Mater. Chem. 2007, 17,
3154–3160. (b) Fe´rey, G. Chem. Soc. ReV. 2008, 37, 191–214.
(2) For example, see: (a) Bastin, L.; Barcia, P. S.; Hurtado, E. J.; Silva, J. A. C.;
Rodrigues, A. E.; Chen, B. J. Phys. Chem. C 2008, 112, 1575–1581. (b)
Lee, E. Y.; Jang, S. Y.; Suh, M. P. J. Am. Chem. Soc. 2005, 127, 6374–
6381. (c) Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376–
9377. (d) Snurr, R. Q.; Hupp, J. T.; Nguyen, S. T. AIChE 2004, 50, 1090–
1095. (e) Bae, Y. S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.;
Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Langmuir 2008, 24, 8592–8598.
(f) Bae, Y. S.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.;
Snurr, R. Q. Chem. Commun. 2008, 4135–4137.
a (A) Supercritical CO2 activation of MOF microcrystals, (B) adsorption
of gas molecules after supercritical CO2 activation, (C) traditional activation
of MOF crystals, (D) adsorption of gas molecules after traditional activation,
and (E) resolvation.
(3) (a) Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127,
8940–8941. (b) Horike, S.; Dinca, M.; Tamaki, K.; Long, J. R. J. Am. Chem.
Soc. 2008, 130, 5854–5855. (c) Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp,
J. T.; Albrecht-Schmitt, T. E. Chem. Commun. 2006, 256, 3–2565.
(4) For example, see: (a) Collins, D. J.; Zhou, H.-C. J. Mater. Chem. 2007,
17, 3154–3160. (b) Fe´rey, G. Chem. Soc. ReV. 2008, 37, 191–214. (c) Nouar,
F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J.; Eddaoudi,
M. J. Am. Chem. Soc. 2008, 130, 1833–1835. (d) Chen, B.; Ockwig, N. W.;
Millard, A. R.; Contreras, D. S.; Yaghi, O. M. Angew. Chem., Int. Ed.
2005, 44, 4745–4749. (e) Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.;
Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876–16883.
(f) Latroche, M.; Surble´, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn,
P. L.; Lee, H.; Chang, J.; Jhung, S. H.; Fe´rey, G. Angew. Chem., Int. Ed.
2006, 45, 8227–8231. (g) Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc.
2007, 129, 9604–9605. (h) Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.;
Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T. J. Am. Chem. Soc. 2007,
129, 12680–12680.
adsorption isotherms (TGA experiments; see SI), indicates pres-
ervation of micropores in nitrogen-impermeable samples. Similar
behavior is seen for other MOFs. Thus, collapse of crystallographi-
cally defined channels appears not to be the primary cause of
surface-area loss in the four MOFs examined (although it may be
a secondary contributor).
As illustrated in Scheme 1, we hypothesize that thermal
evacuation of solvent instead causes the collapse of interparticle
mesopores. Misalignment of micropores at particle/particle bound-
aries then inhibits access by gas molecules to internal (microporous)
surfaces. At the same time, re-exposure to liquid solvent should
enable particles to separate and to take up comparatively large
solvent molecules (as is indeed observed). In contrast, ScD
activation prevents mesopore collapse, leaving micropores acces-
sible to gas molecules. Consistent with this description, we find
that thermally evacuated samples of 5, exhibiting negligible surface
area, can be rendered microporous by resolvating the material and
then subjecting it to ScD (steps E f A f B in Scheme 1; final
surface area ) 370 m2/g)).
(5) Duren, T.; Milliange, F.; Ferey, G.; Walton, K. S.; Snurr, R. Q. J. Phy.
Chem. C 2007, 111, 15350–15356.
(6) (a) Kepert, C. J.; Rosseinsky, M. J. Chem. Commun. 1999, 375–376. (b)
Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem.
Res. 1998, 31, 474–484.
(7) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.;
Yaghi, O. M. Science 2002, 295, 469–472.
(8) Inclusion of pairs of methyl groups on the phenyl carboxylate units proved
essential for formation of a crystalline coordination polymer. Attempts to
prepare MOFs using analogues of 1 lacking one or both methyl groups
yielded only amorphous solids. As shown in the crystal structure of 5, the
methyl groups render the napthelendiimide geometrically orthogonal to the
phenyl carboxylate.
(9) (a) Reichenauer, G.; Scherer, G. W. Colloids Surf., A 2001, 187-188, 41–
50. (b) Reichenauer, G.; Scherer, G. W. J. Non-Cryst. Solids 2001, 285,
167–174. (c) Cooper, A. I. J. Mater. Chem. 2000, 10, 207–234. (d)
Lubguban, J. A.; Gangopadhyay, S.; Lahlouh, B.; Rajagopalan, T.; Biswas,
N.; Sun, J.; Huang, D. H.; Simon, S. L.; Mallikarjunan, A.; Kim, H.-C.;
Hedstrom, J.; Volksen, W.; Miller, R. D.; Toney, M. F. J. Mater. Res.
2004, 19, 3224–3233.
To summarize, careful processing of four representative MOFs
with liquid and supercritical carbon dioxide leads to substantial, or
in some cases spectacular (up to 1200%), increases in gas-accessible
surface area. Maximization of surface area is key to the optimization
of MOFs for many potential applications. Preliminary evidence
points to inhibition of mesopore collapse, and therefore micropore
accessibility, as the basis for the extraordinarily efficacious outcome
of ScD-based activation.
(10) IRMOF-16 was prepared by a method similar to that in the literature,7 but
from DMF rather than DEF as solvent. Powder X-ray diffraction (PXRD)
measurements confirm that IRMOF-16 is formed but do not rule out
contamination with IRMOF-15 (the catenated analogue of IRMOF-16), as
IRMOF-15 displays no unique PXRD peaks. IRMOF-15 contamination
would be expected to produce falsely low surface areas for the IRMOF-16
sample.
Acknowledgment. We gratefully acknowledge the U.S. Dept.
of Energy, Office of Science, Basic Energy Science Program (Grant
no. DE-FG02-08-ER15967) and the Northwestern Nanoscale Sci-
ence and Engineering Center for financial support. A.P.N. thanks
the ACS Petroleum Research Fund for an Alternative Energy
(11) (a) Wang, Z.; Cohen, S. M. J. Am. Chem. Soc. 2007, 129, 12368–12369.
(b) Wang, Z.; Cohen, S. M. Angew. Chem., Int. Ed. 2008, 47, 4699–4702.
(c) Tanabe, K. K.; Wang, Z.; Cohen, S. M J. Am. Chem. Soc. 2008, 130,
8508–8517.
JA808853Q
9
460 J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009