C.K. Modi / Spectrochimica Acta Part A 71 (2009) 1741–1748
1747
Fig. 4. TGA/DTG, DTA and DSC curves of [Co(SB)(H2O)2]n·2H2O.
obtained from DTG curves, all the coordination polymers have
negative entropy, which indicates that the studied coordination
polymers have more ordered systems than reactants [57]. The
kinetic parameters, especially energy of activation (Ea) is help-
ful in assigning the strength of the coordination polymers. The
calculated Ea values of the investigated coordination polymers
for the first dehydration step are in the range 3.36–3.81 kJ mol−1
(Table 4). Based on the activation energy values the thermal
stabilities of the coordination polymers in the decreasing order is:
It is evident that the thermal stabilities of the coordination
polymers increase as the ionic radii decrease. The thermal sta-
bilities of the Ni(II), Mn(II) and VO(IV) coordination polymers
in the solid-state follow the general trend found by Irving and
Williams [58] for the stabilities of complexes in solution. The Co(II),
Cu(II) and Zn(II) coordination polymers deviate from this general
behavior. Since the Irving–Williams series reflects electrostatic
effects, this observation indicates that the water–metal interaction
in these coordination polymers is almost of ion-dipole type.
Head, Department of Chemistry, Sardar Patel University, Vallabh
Vidyanagar, India, for providing the necessary laboratory facilities.
Analytical facilities provided by the SAIF, Central Drug Research
Institute, Lucknow, India and the Sophisticated Instrumentation
Centre for Applied Research & Testing (SICART), Vallabh Vidyanagar,
Gujarat, India is gratefully acknowledged.
References
[1] (a) B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629;
(b) G.-Q. Zhang, G.-Q. Yang, J.-S. Ma, Cryst. Growth Des. 6 (2006) 357;
(c) A.K. Ghosh, D. Ghoshal, J. Ribas, G. Mostafa, N.R. Chaudhuri, Cryst. Growth
Des. 6 (2006) 36;
(d) S.-Q. Zang, Y. Su, Y.-Z. Li, H.-Z. Zhu, Q.-J. Meng, Inorg. Chem. 45 (2006) 2972.
[2] Y. Xu, D. Yuan, B. Wu, L. Han, M. Wu, F. Jiang, M. Hong, Cryst. Growth Des. 6
(2006) 1168.
[3] C. Nather, J. Greve, I. Jeb, Chem. Mater. 14 (2002) 4536.
[4] A. Bajpai, S. Rai, U.D.N. Bajpai, Polym. J. (Tokyo) 29 (1997) 44;
A. Bajpai, S. Rai, U.D.N. Bajpai, Chem. Abstr. 126 (2006) 126137.
[5] K. Tokaji, I. Tomita, T. Endo, Macromolecules 30 (1997) 7386.
[6] D.H. Grayson, J.M. Kelly, Sol. Energy R and D, Eur. Community, Ser. D. (Photo
Chem., Photo Electrochem., Photobiol. Processes) 99 (51–57) (1983) 178958;
D.H. Grayson, J.M. Kelly, Chem. Abstr. 99 (51–57) (1983) 178958.
[7] N. Toshima, Kogya Zairyo, Chem. Abstr. 39 (1991) 451991.
[8] (a) M. Kurmoo, H. Kumagai, M. Akita-Tanaka, K. Inoue, S. Takagi, Inorg. Chem.
45 (2006) 1627;
4. Conclusions
The design and synthesis of a new tetradentate ligand (H2SB)
have successfully demonstrated. FT-IR, 1H and 13C NMR studies
reveal that this ligand exists in the tautomeric enol form in the
solid and solution with intramolecular hydrogen bonding. New
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and VO(IV) coordination poly-
meric assemblies were prepared. All the coordination polymers are
insoluble in common organic solvents. It was not possible to charac-
terize them by convectional methods, like osmometry, viscometry,
conductometry, etc., as they are insoluble. The nature of the ligand,
high thermal stability, metal–ligand ratio (1:1) and insolubility of
these compounds suggest their polymeric nature. An octahedral
geometry has been assigned to all the prepared polymers.
(b) Y.-Z. Tang, X.-S. Wang, T. Zhou, R.-G. Xiong, Cryst. Growth Des. 1 (2006) 11;
(c) K. Takaoka, M. Kawano, T. Hozumi, S.-I. Ohkoshi, M. Fujita, Inorg. Chem. 45
(2006) 3976;
(d) S. Midollini, A. Orlandini, P. Rosa, L. Sorace, Inorg. Chem. 44 (2006) 2060;
(e) S.K. Ghosh, J. Ribas, P.K. Bharadwaj, Cryst. Growth Des. 5 (2005) 623.
[9] (a) S.A. Zimmerman, J.G. Ferry, Biochemistry 45 (2006) 5149;
(b) P.K. Padma, G.K. Andrey, R.K. James, J. Phys. Chem. B 110 (2006) 3841;
(c) D.A. Dickie, G. Schatte, M.C. Jennings, H.A. Jenkins, S.Y.L. Khoo, J.A.C.
Clyburne, Inorg. Chem. 45 (2006) 1646;
(d) Y. Lu, Y. Xu, E. Wang, J. Lu, C.-W. Hu, L. Xu, Cryst. Growth Des. 5 (2005) 257.
[10] (a) T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A.
Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Chem. Mater. 11 (1999)
2633;
(b) H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, J. Am. Chem. Soc. 120 (1998) 8571;
(c) B. Chen, M. Eddaoudi, S.T. Hyde, T.M. Reineke, M. o’Keeffe, O.M. Yaghi, Science
291 (2001) 1021.
[11] J.D. Joshi, N.B. Patel, S.D. Patel, J. Macromol. Sci. A: Pure Appl. Chem. 43 (2006)
1167.
Acknowledgements
[12] N.B. Patel, G.P. Patel, J.D. Joshi, J. Macromol. Sci. A: Pure Appl. Chem. 42 (2005)
931.
[13] H. Matsui, H. Hasegawa, M. Yoshihara, J. Macromol. Sci. A: Pure Appl. Chem. 42
(2005) 869.
The author would like to present his deep thanks and gratitude
to the University Grant Commission, New Delhi [Grant No. F.31-
153/2005 (SR)] for financial support. The author also thanks the
[14] A.K. El-Sawaf, D.X. West, Trans. Met. Chem. 23 (1998) 417.