we have previously observed7 for the related reactions of trans-
References
∫
[Pt(N4CR)2(PPh3)2] with N CC2H5.
1 (a) V. Y. Kukushkin and A. J. L. Pombeiro, Chem. Rev., 2002, 102, 1771;
(b) H.-W. Fru¨hauf, Chem. Rev., 1997, 97, 523; (c) R. A. Michelin, M.
Mozzon and R. Bertani, Coord. Chem.Rev., 1996, 147, 299; (d) R. J.
Herr, Bioorg. Med. Chem., 2002, 10, 3379; (e) L. Myznikov, A. Hrabalek
and G. Koldobskii, Chem. Heterocycl. Comp., 2007, 43, 1; (f) K. V.
Gothelf and K. A. Jfrgensen, Chem. Rev., 1998, 98, 863.
2 (a) S. Wee, M. J. Grannas, W. D. McFadyen and R. A. J. O’Hair,
Aust. J. Chem., 2001, 54, 245; (b) P. Paul and K. Nag, Inorg. Chem.,
1987, 26, 2969; (c) Y.-J. Kim, J.-T. Han, S. Kang, W. S. Han and S. W.
Lee, Dalton Trans., 2003, 3357; (d) Y.-J. Kim, Y.-S. Kwak, Y.-S. Joo and
S. W. Lee, J. Chem. Soc. Dalton Trans., 2002, 144.
The crystal structure of trans-[Pt(CN)2(PTA)2] 8 was previously
determined47 but no spectroscopic data were reported. Hence, we
1
have now additionally characterized this compound by IR, H
1
1
and 31P{ H} NMR spectroscopies. It exhibits in the H NMR
spectrum, in DMSO-d6, singlets at d 4.62 and 4.43 assigned to
the two types of methylene protons, i.e. NCH2N and PCH2N
respectively. The 31P{ H} NMR spectrum displays the expected
1
singlet at d -64.5 with the platinum satellites (JPt-P = 2050 Hz,
indicative27 of the trans phosphine configuration). The 13C{ H}
1
3 W. P. Fehlhammer, T. Kemmerich and W. Beck, Chem. Ber., 1983, 116,
2691.
NMR (singlet at d 126.9) and IR (strong band at 2127 cm-1) data
confirm the presence of the cyano ligands in 8.
4 (a) J. V. Duncia, M. E. Pierce and J. B. Santella III, J. Org. Chem., 1991,
56, 2395; (b) B. E. Huff and M. A. Staszak, Tetrahedron Lett., 1993, 34,
8011; (c) S. J. Wittenberger and B. G. Donner, J. Org. Chem., 1993, 58,
4139; (d) K. Koguro, T. Oga, S. Mitsui and R. Orita, Synthesis, 1998,
910; (e) D. P. Curran, S. Hadida and S.-Y. Kim, Tetrahedron, 1999, 55,
8997.
5 (a) Z. P. Demko and K. B. Sharpless, J. Org. Chem., 2001, 66, 7945;
(b) F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless, J. Am.
Chem. Soc., 2002, 124, 12210; (c) F. Himo, Z. P. Demko, L. Noodleman
and K. B. Sharpless, J. Am. Chem. Soc., 2003, 125, 9983.
6 D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo and L. Vaccaro, J. Org.
Chem., 2004, 69, 2896.
The liberated 5-R-1H-tetrazoles (R = Ph, 4-ClC6H4 and 3-
1
NC5H4) were characterized by IR, 1H and 13C{ H} spectroscopies
and by ESI-MS. In particular 13C NMR resonance of the C=N
tetrazole ring carbon atom is observed at a higher field (148–
156 ppm) than that of the corresponding complex 4–6 (ca.
164 ppm).
Although the tetrazolates, in the Pt complexes, are coordinated
by the N2-nitrogen atom of the (N4C) ring, the liberated tetrazoles
are expected to be in the 1H-tautomeric form (with the H
atom at N1). This is the privileged one in the solid state,48
although in solution a tautomeric equilibrium can occur, being
strongly dependednt on the experimental conditions.48,49 The N1–
N2 linkage isomerization of tetrazolato ligands is also possible, as
known for Pt 7,50 and Co 51 metal centres.
7 S. Mukhopadhyay, J. Lasri, M. A. J. Charmier, M. F. C. Guedes, da
Silva and A. J. L. Pombeiro, Dalton Trans., 2007, 5297.
8 A. D. Phillips, L. Gonsalvi, A. Romerosa, F. Vizza and M. Peruzzini,
Coord. Chem. Rev., 2004, 248, 955.
9 (a) S. Bolan´o, L. Gonsalvia, F. Zanobinia, F. Vizza, V. Bertolasi, A.
Romerosa and M. Peruzzini, J. Mol. Cat. A, 2004, 224, 61; (b) F.
Joo´, Aqueous Organometallic Catalysis, Kluwer Academic Publish-
ers, Dordrecht, 2001; Aqueous Phase Organometallic Catalysis, ed.
B. Cornils and W. A. Herrmann, Wiley-VCH, Weinheim, 1998; Aqueous
Organometallic Chemistry and Catalysis, ed. I. T. Horvath and F. Joo´,
NATO ASI Series 3/5, Kluwer Academic Publishers, Dordrecht, 1995.
10 (a) P. Smolen´ski, F. P. Pruchnik, Z. Ciunik and T. Lis, Inorg. Chem.,
2003, 42, 3318; (b) F. P. Pruchnik and P. Smolen´ski, Appl. Organomet.
Chem., 1999, 13, 829; (c) F. P. Pruchnik, P. Smolen´ski and K. Wajda-
Hermanowicz, J. Organomet. Chem., 1998, 570, 63; (d) F. P. Pruchnik,
P. Smolen´ski, E. Gałdecka and Z. Gałdecki, New J. Chem., 1998, 1395;
(e) F. P. Pruchnik, P. Smolen´ski, E. Gałdecka and Z. Gałdecki, Inorg.
Chim. Acta, 1999, 293, 110; (f) F. P. Pruchnik, P. Smolen´ski and I.
Raksa, Polish J. Chem., 1995, 69, 5.
11 (a) A. Dorcier, W. H. Ang, S. Bolan´o, L. Gonsalvi, L. Juillerat-
Jeannerat, G. Laurenczy and M. Peruzzini, Organometallics, 2006,
25, 4090; (b) A. D. Phillips, F. Zanobini, P. J. Dyson, C. Scolaro,
T. J. Geldbach, S. Rochat, A. Dorcier, C. Gossens, A. Bergamo, M.
Cocchietto, I. Tavernelli, G. Sava, U. Rothlisberger and P. J. Dyson,
Organometallics, 2006, 25, 756.
12 C. Scolaro, A. Bergamo, L. Brescacin, R. Delfino, M. Cocchietto, G.
Laurenczy, T. J. Geldbach, G. Sava and P. J. Dyson, J. Med. Chem.,
2005, 12, 4161.
13 B. Serli, E. Zangrando, T. Gianferrara, C. Scolaro, P. J. Dyson, A.
Bergamo and E. Alessio, Eur. J. Inorg. Chem., 2005, 3423.
14 F. Mohr, S. Sanz, E. R. T. Tiekink and M. Laguna, Organometallics,
2006, 25, 3084.
15 F. Mohr, E. Cerrada and M. Laguna, Organometallics, 2006, 25, 644.
16 (a) D. A. Krogstad, J. Cho, A. J. DeBoer, J. A. Klitzke, W. R. Sanow,
H. A. Williams and J. A. Halfen, Inorg. Chim. Acta, 2006, 359, 136;
(b) D. A. Krogstad, S. B. Owens, J. A. Halfen and V. G. Young, Jr.,
Inorg. Chem. Comm., 2005, 8, 65.
17 P. Bergamini, V. Bertolasi, L. Marvelli, A. Canella, R. Gavioli, N.
Mantovani, S. Mana˜s and A. Romerosa, Inorg. Chem., 2007, 46, 4267.
18 Z. A. Sam, A. Roodt and S. Otto, J. Coord. Chem., 2006, 59, 1025.
19 S. Otto and A. Roodt, Inorg. Chem. Comm., 2001, 4, 49.
20 (a) D. J. Daigle, A. B. Pepperman, Jr. and S. L. Vail, J. Heterocycl.
Chem., 1974, 11, 407; (b) D. J. Daigle, Inorg. Synth., 1998, 32, 40.
21 J. Erbe and W. Beck, Chem. Ber., 1983, 116, 3867.
Conclusions
We have found a simple route for new water-soluble azido-
platinum(II) complexes based on reaction of cis-[Pt(N3)2(PPh3)2]
with hydrosoluble PTA or [PTA-Me]I at room temperature.
As shown for one of the complexes, cis-[Pt(N3)2(PTA)2], these
azido-compounds can be applied as starting materials for the
platinum mediated synthesis of 5-substituted tetrazoles upon [2 +
3] cycloadditions with organonitriles NCR to give bis(tetrazolato)
complexes trans-[Pt(N4CR)2(PTA)2] from which the tetrazoles can
be not only conveniently liberated but also conveniently isolated in
a pure form on account, on one hand, of the high water solubility
of the concomitantly formed PTA-platinum complex and, on
the other hand, of the water insolubility of the tetrazole which
spontaneously precipitates out of the solution. In this way, the
5-substituted tetrazoles are obtained and isolated as solids (in a
high yield) in a easy single-pot process upon simple treatment
of the respective tetrazolato complexes with aqueous diluted
HCl, the other metal containing product, cis-[Pt(Cl)2(PTA-H)2]2+,
remaining in the mother aqueous solution.
This type of approach for metal- mediated synthesis and easy
isolation of water-insoluble organonitrogen compounds, based
on the use of hydrosoluble PTA complexes, is expected to be
applicable to many other cases and its extension to different
reactions is under way in our laboratory.
Acknowledgements
This work has been partially supported by the Foundation
for Science and Technology (FCT), grants and BPD/20869/04
and SFRH/BPD/14690/2003, and its POCI 2010 programme
(FEDER funded).
22 G. M. Sheldrick, Acta Crystallogr. Sect. A, 1990, 46, 467.
23 G. M. Sheldrick, SHELXL-97, University of Gottingen, Germany,
1997.
24 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
6554 | Dalton Trans., 2008, 6546–6555
This journal is
The Royal Society of Chemistry 2008
©