Notes and references
z The Greek character quoppa ( ) was chosen as the one-letter code
for Naq.
8 We suspect that in aqueous acid the methoxy groups are substituted
with hydroxyls which results in oxygen dependent quinone polymer-
ization.
** Interestingly, the 9-methylenefluorene by-product is polymerized if
the crude reaction mixture sits.
ww We believe that the hypervalent iodine species react selectively with
tryptophan and tyrosine due to the lower steric bulk of the covalent
intermediate formed with these amino acids.
1 Function of Quinones in Energy Conserving Systems, ed.
B. L. Trumpower, Academic Press, New York, 1982.
2 P. L. Dutton, C. C. Moser, V. D. Sled, F. Daldal and T. Ohnishi,
Biochim. Biophys. Acta, 1998, 1364, 245–257.
3 E. Takahashi, T. A. Wells and C. A. Wraight, Biochemistry, 2001,
40, 1020–1028.
4 Z. Y. Zhu and M. R. Gunner, Biochemistry, 2005, 44,
82–96.
5 A. Osyczka, C. C. Moser and P. L. Dutton, Trends Biochem. Sci.,
2005, 30, 176–182.
6 P. Hothi, M. Lee, P. M. Cullis, D. Leys and N. S. Scrutton,
Biochemistry, 2008, 47, 183–194.
7 V. L. Davidson, Bioorg. Chem., 2005, 33, 159–170.
8 B. Schwartz and J. P. Klinman, Vitam. Horm. (N. Y., NY, U. S.),
2001, 61, 219–239.
9 V. L. Davidson, Arch. Biochem. Biophys., 2004, 428,
32–40.
10 S. Hay, B. B. Wallace, T. A. Smith, K. P. Ghiggino and
T. Wydrzynski, Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
17675–17680.
Fig. 3 Cyclic voltammetry of heptaNaq in dimethylformamide. Slow
(50 mV sꢀ1, top) and fast (2 V sꢀ1, bottom) scan rates reveal proton
dependent and independent redox-couples. Peak potentials are pre-
sented relative to NHE using the ferrocene couple (766 mV versus
NHE)23 as an internal standard. See ESI for experimental details.w
11 W. Li, J. Heinze and W. Haehnel, J. Am. Chem. Soc., 2005, 127,
6140–6141.
12 S. Hay, K. Westerlund and C. Tommos, J. Phys. Chem. B, 2007,
111, 3488–3495.
13 L. Alfonta, Z. W. Zhang, S. Uryu, J. A. Loo and P. G. Schultz,
J. Am. Chem. Soc., 2003, 125, 14662–14663.
14 M. R. Seyedsayamdost and J. Stubbe, J. Am. Chem. Soc., 2006,
128, 2522–2523.
15 M. O’Donnell, W. Bennett and S. Wu, J. Am. Chem. Soc., 1989,
111, 2353–2355.
16 D. L. Boger and I. C. Jacobson, J. Org. Chem., 1990, 55,
1919–1928.
17 M. S. Newman and A. R. Choudhary, Org. Prep. Proced. Int.,
1989, 21, 359–360.
18 E. J. Corey, F. Xu and M. C. Noe, J. Am. Chem. Soc., 1997, 119,
12414–12415.
19 E. J. Corey and M. C. Noe, Org. Synth., 2003, 80, 38–47.
20 P. V. Ramachandran, S. Madhi, L. Bland-Berry, M. V. R.
Reddy and M. J. O’Donnell, J. Am. Chem. Soc., 2005, 127,
13450–13451.
21 H. Tohma, H. Morioka, Y. Harayama, M. Hashizume and
Y. Kita, Tetrahedron Lett., 2001, 42, 6899–6902.
22 H. Bauer, K. Fritz-Wolf, A. Winzer, S. Kuhner, S. Little,
V. Yardley, H. Vezin, B. Palfey, R. H. Schirmer and
E. Davioud-Charvet, J. Am. Chem. Soc., 2006, 128, 10784–10794.
23 R. C. Prince, P. L. Dutton and J. M. Bruce, FEBS Lett., 1983, 160,
273–276.
24 W. M. Clark, Oxidation/Reduction Potentials of Organic Systems,
The Williams and Wilkins Co., Baltimore, 1960.
25 R. C. Prince, P. Lloyd-Williams, J. M. Bruce and P. L. Dutton,
Methods Enzymol., 1986, 125, 109–119.
The ease with which Naq can be synthesized and incorporated
into robust protein scaffolds offers new ways to examine the
interplay between the protein structure and quinone redox and
protonation states without the immense complexity attendant
with natural quinone proteins. Electrochemically, the two-
electron two-proton couple of Naq is central to the known
range of biological redox cofactors and near the midpoint of the
quinones critical to respiration and photosynthesis. Thus Naq is
well positioned to foster new concepts and constructions of
multicofactor artificial proteins incorporating Naq and designed
to explore mechanistic aspects of natural oxidoreductases, or to
modulate quinone properties for novel specific catalytic pur-
poses. Potentials observed in the aprotic electrochemical studies
of heptaNaq represent an upper limit on the expected values for
these couples within a protein matrix, supporting the utility of
Naq in very low potential electron transfer chains within a
protein core. In addition, the proton-decoupled electron transfer
potentials are favourable for the implementation of constructs
using Naq as a very low potential reductive intermediate for the
generation of stable strongly reducing fuels such as hydrogen.
The authors thank Tammer A. Farid, Anne K. Jones and
Christopher C. Moser for useful discussions. This work was
supported by DOE Grant DF-FG02-05ER46223; USPHS Grant
GM41048 (P.L.D.); NSF-MRSEC Grant DMR05-20020.
ꢁc
This journal is The Royal Society of Chemistry 2009
170 | Chem. Commun., 2009, 168–170