1058
A.-A.C. Varvogli et al. / Tetrahedron 65 (2009) 1048–1058
Kinney, A.; Keen, N. T. Mol. Plant-Microbe Interact. 2002, 15, 1213–1218; (f) Slay-
maker, D. H.; Keen, N. T. Plant Sci. 2004, 166, 387–396; (g) Hagihara, T.; Hashi, M.;
Takeuchi, Y.; Yamaoka, N. Planta 2004, 218, 606–614; (h) Slaymaker, D. H.; Hop-
pey, C. M. Plant Sci. 2006, 170, 54–60.
7. (a) Wood, J. L.; Jeong, S.; Salcedo, A.; Jenkins, J. J. Org. Chem. 1995, 60, 286–287;
(b) Kuwahara, S.; Moriguchi, M.; Miyagawa, K.; Konno, M.; Kodama, O. Tetra-
hedron Lett. 1995, 36, 3201–3202; (c) Kuwahara, S.; Moriguchi, M.; Miyagawa,
K.; Konno, M.; Kodama, O. Tetrahedron 1995, 51, 8809–8814.
reduced pressure and the obtained residue was purified by flash
column chromatography on silica gel with a mixture of heptane/
EtOAc (4:1 v/v) to give 18 mg (97%) of tricycloketal 29 as a colorless
20
oil. Rf (hexane/EtOAc 7:3 v/v) 0.42; [
a
]
ꢁ20.7 (c 0.4, CHCl3); IR
D
(neat): 3028, 2956, 2852, 1740, 1658 cmꢁ1
;
1H NMR (CDCl3,
400 MHz,): 7.41–7.37 (m, 3H, ArH), 7.32–7.29 (m, 2H, ArH), 4.85
d
8. (a) Henschke, J. P.; Rickards, R. W. Tetrahedron Lett.1
996, 37, 3557–3560; (b) Zeng,
(dd, J¼17.8, 2.0 Hz, 1H, H-5a), 4.75 (br s, 1H, H-7), 4.66–4.58 (m, 3H,
H-8 and CH2Ph), 4.51 (dd, J¼17.8, 1.4 Hz, 1H, H-5b), 4.09–4.05 (m,
1H, H-9a), 3.99–3.95 (m, 1H, H-9b), 2.31–2.24 (m, 1H, H-10a), 2.06–
1.99 (m, 1H, H-10b), 1.62–1.54 (m, 2H, H-30), 1.43–1.25 (m, 8H, H-20,
H-40, H-50, H-60), 0.86 (t, J¼6.9 Hz, 3H, H-70); 13C NMR (CDCl3,
C.-M.; Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1997, 62, 4780–4784; (c)
Yoda, H.; Kawauchi, M.; Takabe, K.; Ken, H. Heterocycles 1997, 45, 1895–1898.
9. Honda, T.; Mizutani, H.; Kanai, K. J. Org. Chem. 1996, 61, 9374–9378.
10. (a) Ishihara, J.; Sugimoto, T.; Murai, A. Synlett 1996, 335–336; (b) Ishihara, J.;
Sugimoto, T.; Murai, A. Tetrahedron 1997, 53, 16029–16040.
11. Yu, P.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. Tetrahedron 1998, 54,1783–1788.
12. Chenevert, R.; Dasser, M. Can. J. Chem. 2000, 78, 275–279.
100 MHz): d 169.0 (C-3), 161.0 (C-6), 136.9 (C-iAr), 129.3 (C-2), 128.9
ˆ
(C-oAr), 128.7 (C-pAr), 128.0 (C-mAr), 104.3 (C-1), 77.2 (C-8), 73.5
(C-5), 73.0 (C-7), 68.6 (CH2Ph), 64.1 (C-9), 31.7 (C-50), 31.1 (C-30),
29.6 (C-10), 29.1 (C-40), 22.9 (C-20), 22.6 (C-60), 14.1 (C-70). HRMS
(MALDI-FTMS): m/e calcd for C22H28O5Na [(MþNa)þ]: 395.1829.
Found: 395.1833.
13. Cheˆnevert, R.; Dasser, M. J. Org. Chem. 2000, 65, 4529–4531.
14. (a) Carda, M.; Castillo, E.; Rodriguez, S.; Falomir, E.; Alberto Marco, J. Tetrahe-
dron Lett. 1998, 39, 8895–8896; (b) Donohoe, T. J.; Fisher, J. W.; Edwards, P. J.
Org. Lett. 2004, 6, 465–467.
15. Mukai, C.; Moharram, S. M.; Hanaoka, M. Tetrahedron Lett. 1997, 38, 2511–2512.
16. Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org. Chem. 1997, 62,
8095–8103.
17. Yu,P.;Yang,Y.;Zhang,Z.Y.;Mak,T.C.W.;Wong,H.N.C.J. Org. Chem.1997,62, 6359–6366.
18. Wong, H. N. C. Pure Appl. Chem. 1996, 68, 335–344.
4.2.30. 4-((10R,20R)-10-Benzyloxy-20,30-dihydroxypropyl)-3-
19. (a) Yoda, H.; Kawauchi, M.; Takabe, K.; Hosoya, K. Heterocycles 1997, 45, 1903–
1906; (b) Di Florio, R.; Rizzacasa, M. A. Aust. J. Chem. 2000, 53, 327–331; (c)
Krishna, P. R.; Narsingam, M.; Kannan, V. Tetrahedron Lett. 2004, 45, 4773–4775.
20. Refs. 8, 12, 14a, 19a.
21. (a) Koumbis, A. E.; Dieti, K. M.; Vikentiou, M. G.; Gallos, J. K. Tetrahedron Lett.
2003, 44, 2513–2516; (b) Gallos, J. K.; Stathakis, C. I.; Kotoulas, S. S.; Koumbis,
A. E. J. Org. Chem. 2005, 70, 6884–6890; (c) Koumbis, A. E.; Chronopoulos, D.
Tetrahedron Lett. 2005, 46, 4353–4355; (d) Koumbis, A. E.; Kaitaidis, A. D.;
Kotoulas, S. S. Tetrahedron Lett. 2006, 47, 8479–8481; (e) Koumbis, A. E.;
Kotoulas, S. S.; Gallos, J. K. Tetrahedron 2007, 63, 2235–2243.
22. Koumbis, A. E.; Varvogli, A.-A. C. Synlett 2006, 3340–3342.
23. Preliminary results of this work were presented in: (a) 1st European Chemistry
Congress, Budapest, Hungary, August 2006, p 329 (N-PO-94); (b) 2nd Hellenic
Symposium on Organic Synthesis, Athens, Greece, April 2007, p 53 (L17).
24. Pakulski, Z.; Zamojksi, A. Tetrahedron 1995, 51, 871–908.
octanoylfuran-2(5H)-one (30b)
4.2.30.1. TiCl4 promoted deprotection. Following the procedure de-
scribed for 30a protected diol 28b (22 mg, 0.05 mmol) gave diol
30b (11 mg, 56%) as a pale yellow oil. Rf (hexane/EtOAc 1:3 v/v)
20
0.13; [
a]
ꢁ44.6 (c 0.3, CHCl3); IR (neat): 3418, 2954, 2927, 2857,
D
1763, 1686 cmꢁ1 1H NMR (CDCl3, 400 MHz,):
; d 7.38–7.31 (m, 3H,
ArH), 7.28–7.23 (m, 2H, ArH), 5.21 (d, J¼3.5 Hz, 1H, H-10), 5.14 and
4.87 (ABq, J¼19.9 Hz, 2H, H-5), 4.54 (s, 2H, CH2Ph), 3.89 (br s, 1H, H-
20), 3.78–3.68 (m, 2H, H-30), 3.07–2.86 (m, 3H, H-200,1ꢂOH), 2.33 (br
s, 1H, 1ꢂOH), 1.61–1.58 (m, 2H, H-400), 1.32–1.25 (m, 8H, H-300, H-500,
H-600, H-700), 0.88 (t, J¼7.0 Hz, 3H, H-800); 13C NMR (CDCl3, 100 MHz):
25. Dahlman, O.; Garegg, P. J.; Mayer, H.; Schramek, S. Acta Chem. Scand. Ser. B 1986,
40, 15–20.
d
198.2 (C-100), 176.9 (C-2), 170.1 (C-4), 136.1 (C-iAr), 128.83 (C-oAr),
128.81 (C-pAr), 128.3 (C-mAr), 126.1 (C-3), 76.5 (C-20), 73.9 (C-10),
73.4 (C-5), 70.9 (CH2Bn), 63.4 (C-30), 42.0 (C-200), 31.7 (C-600), 29.1 (C-
400), 29.0 (C-500), 23.1 (C-300), 22.6 (C-700), 14.1 (C-800). HRMS (MALDI-
FTMS): m/e calcd for C22H30O6Na [(MþNa)þ]: 413.1935. Found:
413.1938.
26. Intermediates 10 and 11 have been previously prepared from D-mannitol, fol-
lowing a different synthetic scheme: (a) Toyota, M.; Hirota, M.; Hirano, H.;
Ihara, M. Org. Lett. 2000, 2, 2031–2034; (b) Kagawa, N.; Ihara, M.; Toyota, M.
Org. Lett. 2006, 8, 875–878.
27. Sugar numbering.
28. Wang, E. S.; Choy, Y. M.; Wong, H. N. C. Tetrahedron 1996, 52, 12137–12158.
29. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
30. Using NaH and t-BuOK as bases resulted in the formation of these esters in
almost the same ratios but in much lower yields.
31. As expected the ratio of Z/E isomers remained the same (ca. 4:1).
32. Structural assignment was based on NOE studies, which revealed the indicated
crucial effects (see Scheme 3).
4.2.30.2. AcOH promoted deprotection. Following the procedure
described for 30a protected diol 28b (100 mg, 0.23 mmol) gave diol
30a (74 mg, 82%) as a pale yellow oil.
33. Only slow decomposition of starting material was observed.
34. Obviously, the bulkiness of the TBDPS group played a decisive role regarding
the inactivity of these substrates.
35. Blasdel, L. K.; Myers, A. G. Org. Lett. 2005, 7, 4281–4283.
36. Bonadies, F.; Cardilli, A.; Lattanzi, A.; Pesci, S.; Scettri, A. Tetrahedron Lett. 1995,
36, 2839–2840; (b) Marcos, I. S.; Pedrero, A. B.; Sexmero, M. J.; Diez, D.; Garcia,
N.; Escola, M. A.; Basabe, P.; Conde, A.; Moro, R. F.; Urones, J. G. Synthesis 2005,
3301–3310.
37. Analogous conclusions could be reached by examining the opened formed
intermediates (erythro and threo).
38. Ono, M.; Saotome, C.; Akita, H. Tetrahedron: Asymmetry 1996, 7, 2595–2602.
39. These compounds were found to have identical physical and spectra data with
those reported in the literature.
4.2.31. Syringolide 2 (1b)
Following the procedure described for 1a diol 30b (40 mg,
0.1 mmol)gavesyringolide2(2b,16 mg, 53%),ascolorlessneedles.Mp
25
20
122–123 ꢀC (lit.2 123–124 ꢀC); [
a]
ꢁ76.4 (c 0.35, CHCl3) [lit.11
[a]
D
D
ꢁ74.7 (c 0.1, CHCl3)]; IR, 1H NMR, and 13C NMR spectra were identical
with those reported in the literature.7a,9 HRMS (MALDI-FTMS): m/e
calcd for C15H24O6Na [(MþNa)þ]: 323.1465. Found: 323.1464.
References and notes
40. The 3-O-TBS derivative instead of 3-O-benzyl one (21).
41. Triethylamine, t-BuOK, NaH, DBU, DBN in THF, CHCl3, DME were used.
42. It was observed that ketone 18 slowly decomposes, even when stored
at ꢁ20 ꢀC, giving lactol 23.
1. Bent, A. F.; Kunkel, B. N.; Dahlbeck, D.;Brown, K. L.; Schmidt, R.; Giraudat, J.; Leung,
J.; Staskawicz, B. J. Science 1994, 265, 1856–1860 and references cited therein.
2. Midland, S. L.; Keen, N. T.; Sims, J. J.; Midland, M. M.; Stayton, M. M.; Burton, V.;
Smith, M. J.; Mazzola, E. P.; Graham, K. J.; Clardy, J. J. Org. Chem. 1993, 58, 2940–
2945 and references cited therein.
43. Jefford, C. W.; Jaggi, D.; Boukouvalas, J. J. Chem. Soc., Chem. Commun. 1988,
1595–1596.
44. This approach gave directly 1a and 1b in good overall yields (45–55%) only
when 4–5 mg scale experiments were employed. Using bigger quantities of
starting material resulted in an unexplained dramatic drop of the yields.
Commercially available TMSI or the in situ generated one (from TMSCl and NaI)
was employed.
45. Practically, we observed no reaction when THF/H2O or acetone/H2O was used
as solvent.
46. No tetrahydrofuran-type product was found after careful investigation of the
reaction mixture.
47. Jung, M. E.; Usui, Y.; Vu, C. T. Tetrahedron Lett. 1987, 28, 5977–5980.
48. A simultaneous debenzylation (see Ref. 8b) did not occur.
49. Free triol, lactol, ketal, and desired syringolide were the major components of
this mixture as it was judged by the 1H NMR spectra and LC-MS analysis.
3. Smith, M. J.; Mazzola, E. P.; Sims, J. J.; Midland, S. L.; Keen, N. T.; Burton, V.;
Stayton, M. M. Tetrahedron Lett. 1993, 34, 223–226.
4. Wong, H. N. C. Eur. J. Org. Chem. 1999, 1757–1765.
5. Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1995, 60, 1118–1119.
6. Selected recent publications: (a) Keith, L. W.; Boyd, C.; Keen, N. T.; Partridge, J. E.
Mol. Plant-Microbe Interact. 1997, 10, 416–422; (b) Ji, C.; Okinaka, Y.; Takeuchi, Y.;
Tsurushima, T.; Buzzell, R. I.; Sims, J. J.; Midland, S. L.; Slaymaker, D.; Yoshikawa,
M.; Yamaoka, N.; Keen, N. T. Plant Cell 1997, 9, 1425–1433; (c) Ji, C.; Boyd, C.;
Slaymaker, D.; Okinaka, Y.; Takeuchi, Y.; Midland, S. L.; Sims, J. J.; Herman, E.;
Keen, N. T. Proc. Natl. Acad. Sci. U.S.A.1998, 95, 3306–3311; (d) Tsurushima, T.; Ji, C.;
Okinaka, Y.; Takeuchi, Y.; Sims, J. J.; Midland, S. L.; Yoshikawa, M.; Yamaoka, N.;
Keen, N. T. In Developments in Plant Pathology; Kohmoto, K., Yoder, O. C., Eds.;
Springer: 1998; Vol. 13, pp 139–140; (e) Okinaka, Y.; Yang, C.-H.; Herman, E.;