an important role in biological sciences as peptidomimics5
and enzyme inhibitors6 and are also key synthons for
various organic synthetic transformations.7,8
alkylated R-fluoro(phenylsulfonyl)methanes in moderate to
excellent yields (Table 1).
Olah and co-workers first reported the use of fluorometha-
nol9 for electrophilic monofluoromethylation. The use of
fluoromethyl halides, fluoromethyl triflates, and chlorofluo-
romethane has also been reported.10 Recently, our group has
shown that direct electrophilic monofluoromethylation can
be carried out using S-(monofluoromethyl)-diarylsulfonium
tetrafluoroborate.1b Prakash, Shibata, and Hu have indepen-
dently reported the use of fluorobis(phenylsulfonyl)methane
as monofluoromethide equivalent for the transfer of a
monofluoromethyl group to alcohols,1a allylic acetates,1c and
epoxides1d and also for 1,4-addition reactions to various
Michael acceptors.11 Fluoromethyl phenylsulfone and mag-
nesium benzyl fluoromalonates were also used for nucleo-
philic monofluoromethylation.12 Previously, we have reported
the use of fluoroiodobis(phenylsulfonyl)methane for radical
fluoroalkylations of terminal alkenes.13 Herein, we disclose
a simple and efficient new method for the preparation of
terminal monofluorobis(phenylsulfonyl)alkanes (2a-f) with
varying chain lengths from readily available primary halides
and their subsequent transformations.
Table 1. Nucleophilic Monofluoromethylation of Alkyl Halides
Using R-Fluorobis(phenylsulfonyl)methane (1a)
starting
material
product
(2a-j)
yield
(%)a
entry
a
b
c
d
e
f
g
h
i
Ph(CH2)3I
Ph(CH2)4I
PhCH2CH2CH2CF(SO2Ph)2 83
Ph(CH2)4CF(SO2Ph)2
CH3(CH2)6CF(SO2Ph)2
CH3(CH2)5CF(SO2Ph)2
PhCH2CF(SO2Ph)2
85
90
81
87
82
60
40
20b
60c
CH3(CH2)6I
CH3(CH2)5I
PhCH2Br
Ph(CH2)2Br
CH3CHICH3
CH3CHBr(CH2)2CH3 CH3CH(n-Pr)CF(SO2Ph)2
CH3(CH2)6Cl
PhCH2Cl
Ph(CH2)2CF(SO2Ph)2
CH3CHCF(SO2Ph)2CH3
CH3(CH2)6CF(SO2Ph)2
PhCH2CF(SO2Ph)2
j
a Isolated yield. b No NaI used. c In the presence of NaI.
One of the crucial factors for the nucleophilic substitution
of primary halides is to match the softness of the nucleophile
with that of the electrophilic center. We have previously
reported the nucleophilic difluoromethylation of alkyl halides
using difluoromethyl phenyl sulfone with potassium tert-
butoxide as the base.14 However, we found that using mild
bases such as stoichiometric amounts of potassium carbonate
in DMF or cesium carbonate in acetonitrile, the soft
carbanion [R-fluorobis(phenylsulfonyl)methide] can be gen-
erated from R-fluorobis(phenylsulfonyl)methane at room
temperature. The reaction proceeds smoothly for both
primary alkyl iodides and alkyl bromides to provide the
However, in the case of primary alkyl chlorides, the
reaction was found to be sluggish and yield was low. With
the addition of a catalytic amount of NaI, the reaction of
benzyl chloride provided the desired product in 60% yield.
With secondary alkyl iodide (Table 1, entry g), the reaction
was found to be rather slow compared to that of primary
alkyl iodides.
Interestingly, when the reactions of benzyl halides were
carefully examined, formation of fluorovinyl sulfones was
observed indicating that a second elimination step occurred
after the initial substitution reaction. Vinyl fluorides can be
prepared from electrophilic fluorination of vinyllithiums15,16
or stannanes17,18 via the Horner-Wadsworth-Emmons
condensation of R-fluorophosphonates with carbonyls,19-21
desulfonylation,22,23 stannyldesulfonylation,24-26 silyl and
germyldesulfonylation27,28 of fluorovinyl sulfones, as well
as Peterson29 and Julia30 olefination. Fluorovinyl sulfones,
(6) (a) In Biomedical Frontiers of Fluorine Chemistry; Ojima, I.,
McCarthy, J. R., Welch, J. T., Eds.;ACS Symposium Series 639; American
Chemical Society: Washington, DC, 1996. (b) SelectiVe Fluorination in
Organic and Bioorganic Chemistry; Welch, J. T., Ed.; American Chemical
Society: Washington, DC, 1991; p 105. (c) Steert, K.; El-Sayed, I.; Van
der Veken, P.; Krishtal, A.; Van Alsenoy, C.; Westrop, G. D.; Mottram,
J. C.; Coombs, G. H.; Augustyns, K.; Haemers, A. Bioorg. Med. Chem.
Lett. 2007, 17, 6563.
(15) Lee, S. H.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 2445
(16) Differding, E.; Ofner, H. Synlett 1991, 187
(17) Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. ReV. 1996, 96, 1737
(18) Tius, M. A.; Kawakami, J. K. Tetrahedron 1995, 51, 3997
.
(7) Fluorine-Containing Synthons; Soloshonok, V. A., Ed.; American
Chemical Society: Washington, DC, 2005.
.
.
(8) Abraham, R. J.; Ellison, S. L. R.; Schonholzer, P.; Thomas, W. A.
Tetrahedron 1986, 42, 2101.
.
(19) Tsai, H.-J.; Thenappan, A.; Burton, D. J. J. Org. Chem. 1994, 59,
(9) Olah, G. A.; Pavláth, A. Acta Chim. Acad. Sci. Hung. 1953, 3, 425.
(10) (a) Gerus, I. I.; Kolomeistsev, A. A.; Kolychev, M. I.; Kukhar,
V. P. J. Fluorine Chem. 2000, 105, 31. (b) Zhang, M.-R.; Ogawa, M.;
Furutsuka, K.; Yoshida, Y.; Suzuki, K. J. Fluorine Chem. 2004, 125, 1879.
(c) Zheng, L.; Berridge, M. S. Appl. Radiat. Isot. 2000, 52, 55. (d) Iwata,
R.; Pascali, C.; Bogni, A.; Furumoto, S.; Terasaki, K.; Yanai, K. Appl.
Radiat. Isot. 2002, 57, 347. (e) Zhang, W.; Zhu, L.; Hu, J. Tetrahedron
2007, 63, 10569.
7085
.
(20) Tsai, H.-J. Tetrahedron Lett. 1996, 37, 629
(21) Tsai, H.-J.; Lin, K.-W.; Ting, T.-H.; Burton, D. J. HelV. Chim. Acta
1999, 82, 2231
(22) Inbasekaran, M.; Peet, N. P.; McCarthy, J. R.; LeTourneau, M. E.
J. Chem. Soc., Chem. Commun. 1985, 678
(23) McCarthy, J. R.; Mathews, D. P.; Edwards, M. L.; Stemerick, D. M.;
Jarvi, E. T. Tetrahedon Lett. 1990, 31, 5449
.
.
.
.
(11) Prakash, G. K. S.; Zhao, X.; Chacko, S.; Wang, F.; Vaghoo, H.;
Olah, G. A. Beilstein J. Org. Chem. 2008, 4, 17.
(24) Chen, C.; Wilcoxen, K.; McCarthy, J. R. Tetrahedron. Lett. 1997,
44, 7677
.
(12) (a) Palmer, T. U.S. Patent 5101068, 1992. (b) Li, Y.; Hu, J. Angew.
Chem., Int. Ed 2005, 44, 5882. (c) Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng,
J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693. (d) Liu, J.; Li, Y.; Hu, J. J.
Org. Chem. 2007, 72, 3119.
(25) Chen, C.; Wilcoxen, K.; Zhu, Y.-F.; Kim, K.; McCarthy, J. R. J.
Org. Chem. 1999, 64, 3476
.
(26) Shen, Y. J. Organomet. Chem. 2006, 691, 1452
.
(27) Wang, Z.; Gonzalez, A.; Wnuk, S. F. Tetrahedron Lett. 2005, 46,
(13) Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Ravi, S.; Olah, G. A.
J. Fluorine Chem. 2008, 129, 1036.
5313
.
(28) Wnuk, S. F.; Garcia, P. I., Jr.; Wang, Z. Org. Lett. 2004, 6, 2047
(29) Lin, J.; Welch, J. T. Tetrahedron Lett. 1998, 39, 9613.
(30) Ghosh, A. K.; Zajc, B. Org. Lett. 2006, 8, 1553.
.
(14) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Org. Lett. 2004,
6, 4315.
1128
Org. Lett., Vol. 11, No. 5, 2009