Page 13 of 14
The Journal of Organic Chemistry
1
2
3
4
5
6
7
8
of Mutant p53. J. Am. Chem. Soc. 2005, 127, 6152. (d) Pettit, G. R.; Moser, B. R.; Mendonca,
R. F.; Knight, J. C.; Hogan, F. The Cephalostatins. 22. Synthesis of Bis-steroidal Pyrazine
Pyrones. J. Nat. Prod. 2012, 75, 1063. (e) Bouteiller, C.; Becerril-Ortega, J.; Marchand, P.;
Nicole, O.; Barre, L.; Buisson, A.; Perrio, C. Copper-catalyzed amination of
(bromophenyl)ethanolamine for a concise synthesis of aniline-containing analogues of NMDA
NR2B antagonist ifenprodil. Org. Biomol. Chem, 2010, 8, 1111.
9
[2] For reviews, see: (a) Stevenazzi, A.; Marchini, M.; Sandrone, G.; Vergani, B.; Lattanzio, M.
Amino acidic scaffolds bearing unnatural side chains: An old idea generates new and versatile
tools for the life sciences. Bioorg. Med. Chem. Lett. 2014, 24, 5349. (b) Vogt, H.; Brase, S.
Recent approaches towards the asymmetric synthesis of α, α-disubstituted α-amino acids. Org.
Biomol. Chem. 2007, 5, 406. (c) Perdih, A.; Sollner Dolenc, M. Recent Advances in the
Synthesis of Unnatural α-Amino Acids. Curr. Org. Chem. 2007, 11, 801.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[3] (a) Smith, A. M. R.; Hii, K. K. Transition Metal Catalyzed Enantioselective
α-Heterofunctionalization of Carbonyl Compounds. Chem. Rev. 2011, 111, 1637. (b) Maji, B.;
Yamamoto, H. Use of In Situ Generated Nitrosocarbonyl Compounds in Catalytic Asymmetric
α-Hydroxylation and α-Amination Reactions. Bull. Chem. Soc. Jpn. 2015, 88, 753. (c) Janey, J.
M. Fortschritte bei katalytischen enantioselektiven α-Aminierungen und α-Oxygenierungen
von Carbonylverbindungen. Angew. Chem. 2005, 117, 4364. (d) Tokumasu, K.; Yazaki, R.;
Ohshima, T. Direct Catalytic Chemoselective α-Amination of Acylpyrazoles: A Concise Route
to Unnatural α-Amino Acid Derivatives. J. Am. Chem. Soc. 2016, 138, 2664. (e) Xu, C.; Zhang,
L.; Luo, S. Merging Aerobic Oxidation and Enamine Catalysis in the Asymmetric
α-Amination of β-Ketocarbonyls Using N-Hydroxycarbamates as Nitrogen Sources. Angew.
Chem. 2014, 126, 4233. (f) Baidya, M.; Griffin, K. A.; Yamamoto, H. Direct Catalytic
Chemoselective α-Amination of Acylpyrazoles: A Concise Route to Unnatural α-Amino Acid
Derivatives. J. Am. Chem. Soc. 2012, 134, 18566. (g) Liu, X. X.; Wu, Z. Y.; He, Y. Q.; Zhou,
X. Q.; Hu, T.; Ma, C. W.; Huang, G. S. Copper-Catalyzed C-N Bond Formation via Oxidative
Cross Coupling of Amines with α-Aminocarbonyl Compounds. Adv. Synth. Catal, 2016, 358,
2385. (h) Murru, S.; Lott, C. S.; Fronczek, F. R.; Srivastava, R. S. Fe-Catalyzed Direct α C−H
Amination of Carbonyl Compounds. Org. Lett. 2015, 17, 2122. (i) Jiang, Q.; Xu, B.; Zhao, A.;
Jia, J.; Liu, T.; Guo, C. Transition-Metal-Free Oxidative α C−H Amination of Ketones via a
Radical Mechanism: Mild Synthesis of α-Amino Ketones. J. Org. Chem. 2014, 79, 8750.
[4] (a) Zhou, F.; Liao, F. M.; Yu, J. S.; Zhou, J. Catalytic Asymmetric Electrophilic Amination
Reactions To Form NitrogenBearing Tetrasubstituted Carbon Stereocenters. Synthesis. 2014,
46, 2983. (b) Vilaivan, T.; Bhanthumnavin, W. Organocatalyzed Asymmetric α-Oxidation,
α-Aminoxylation and α-Amination of Carbonyl Compounds. Molecules. 2010, 15, 917. (c)
Yang, X.; Toste, F. D. Direct Asymmetric Amination of α-Branched Cyclic Ketones Catalyzed
by a Chiral Phosphoric Acid. J. Am. Chem. Soc. 2015, 137, 3205. (d) Shang, M.; Wang, X.;
Koo, S. M.; Youn, J.; Chan, J. Z.; Yao, W.; Hastings, B. T.; Wasa, M. Frustrated Lewis
Acid/Brønsted Base Catalysts for Direct Enantioselective α-Amination of Carbonyl
Compounds. J. Am. Chem. Soc. 2017, 139, 95. (e) Tian, J. S.; Ng, K. W. J.; Wong, J. R.; Loh,
T. P. α-Amination of Aldehydes Catalyzed by In Situ Generated Hypoiodite. Angew. Chem.
2012, 124, 9239. (f) Lv, Y.; Li, Y.; Xiong, T.; Lu, Y.; Liu, Q.; Zhang, Q. nBu4NI-Catalyzed
oxidative imidation of ketones with imides: synthesis of α-amino ketones. Chem. Commun.
2014, 50, 2367. (g) Jiang, Q.; Xu, B.; Zhao, A.; Jia, J.; Liu, T.; Guo, C. Transition-Metal-Free
Oxidative α-C−H Amination of Ketones via a Radical Mechanism: Mild Synthesis of α-Amino
Ketones. J. Org. Chem. 2014, 79, 8750. (h) Jia, W. G.; Li, D. D.; Dai, Y. C.; Zhang, H.; Yan, L.
Q.; Sheng, E. H.; Wei, Y.; Mu, X. L.; Huang, K. W. Synthesis and characterization of
bisoxazolinesand pybox-copper (II) complexes and their application in the coupling of
α-carbonyls with functionalized amines. Org. Biomol. Chem. 2014, 12, 5509.
[5] (a) Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Photoredox Activation
for the Direct β-Arylation of Ketones and Aldehydes. Science. 2013, 339, 1593. (b)
Petronijevic, F. R.; Nappi, M.; MacMillan, D. W. Direct β-Functionalization of Cyclic Ketones
with Aryl Ketones via the Merger of Photoredox and Organocatalysis. J. Am. Chem. Soc. 2013,
135, 18323. (c) Jeffrey, J. L.; Petronijevic, F. R.; MacMillan, D. W. C. Selective
Radical-Radical Cross-Couplings: Design of a Formal β-Mannich Reaction. J. Am. Chem. Soc.
2015, 137, 8404. For some other examples for direct functionalization of cyclic ketones, see:
(d) Huang, Z.; Dong, G. Catalytic Direct β-Arylation of Simple Ketones with Aryl Iodides. J.
Am. Chem. Soc. 2013, 135, 17747. (e) Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli,
ACS Paragon Plus Environment