1228 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 4
Brief Articles
7, enantiomers crystallization, X-ray crystallography, biological
assays, and molecular modeling. This material is available free of
relocation. Consequently, the inactivity of the (R)-isomers may
be due to the lack of interaction with the primer grip region of
RT.
Conclusions
References
(1) De Clercq, E. HIV Inhibitors targeted at the reverse transcriptase. AIDS
Res. Hum. RetroVirus 1992, 8, 119–134.
We identified (S)-(+)-5 and (S)-(-)-7 as stereoselective
inhibitors of HIV-1 RT, and specific drug resistance RT
mutations (K103N, L100I and V179D) were demonstrated to
differentially affect enzyme sensitivity to the active compounds
and their racemic forms. Moreover, a selective binding for the
catalytically competent ternary complex of HIV-1 RT was also
demonstrated for these ligands. Cellular assays substantially
confirmed activity of the compounds and are in line with
stereoselectivity of interaction with HIV-1 RT. Molecular
modeling studies provided an explanation of this behavior at
the molecular level.
(2) Kauffmann, G. R.; Cooper, D. A. Antiretroviral therapy of HIV-1
infection: Established treatment strategies and new therapeutic options.
Curr. Opin. Microbiol. 2000, 3, 508–514.
(3) Tomassi, C.; Van Nhien, A. N.; Marco-Contelles, J.; Balzarini, J.;
Pannecouque, C.; De Clercq, E.; Soriano, E.; Postela, D. Synthesis,
anti-HIV-1 activity, and modeling studies of N-3 Boc TSAO com-
pound. Bioorg. Med. Chem. Lett. 2008, 18, 2277–2281.
(4) Campiani, G.; Ramunno, A.; Maga, G.; Nacci, V.; Fattorusso, C.;
Catalanotti, B.; Morelli, E.; Novellino, E. Non-nucleoside HIV-1
reverse transcriptase (RT) inhibitors: past, present, and future perspec-
tives. Curr. Pharm. Des. 2002, 8, 615–657.
(5) Maga, G.; Ubiali, D.; Salvetti, R.; Pregnolato, M.; Spadari, S. Selective
interaction of the human immunodeficiency virus type 1 reverse
transcriptase nonnucleoside inhibitor efavirenz and its thio-substituted
analog with different enzyme-substrate complexes. Antimicrob. Agents
Chemother. 2000, 44, 1186–1194.
(6) Campiani, G.; Morelli, E.; Fabbrini, M.; Nacci, V.; Greco, G.;
Novellino, E.; Ramunno, A.; Maga, G.; Spadari, S.; Caliendo, G.;
Bergamini, A.; Faggioli, E.; Uccella, I.; Bolacchi, F.; Marini, S.;
Coletta, M.; Nacci, A.; Caccia, S. Pyrrolobenzoxazepinone derivatives
as non-nucleoside HIV-1 RT inhibitors: Further structure-activity
relationship studies and identification of more potent broad-spectrum
HIV-1 RT inhibitors with antiviral activity. J. Med. Chem. 1999, 42,
4462–4470.
(7) Locatelli, G. A.; Campiani, G.; Cancio, R.; Morelli, E.; Ramunno,
A.; Gemma, S.; Hubscher, U.; Spadari, S.; Maga, G. Effects of drug
resistance mutations L100I and V106A on the binding of pyrroloben-
zoxazepinone nonnucleoside inhibitors to the human immunodeficiency
virus type 1 reverse transcriptase catalytic complex. Antimicrob. Agents
Chemother. 2004, 48, 1570–1580.
(8) Maga, G.; Ramunno, A.; Nacci, V.; Locatelli, G. A.; Spadari, S.;
Fiorini, I.; Baldanti, F.; Paolucci, S.; Zavatoni, M.; Bergamini, A.;
Galletti, B.; Muck, S.; Hubscher, U.; Giorgi, G.; Guiso, G.; Caccia,
S.; Campiani, G. The stereoselective targeting of a specific enzyme-
substrate complex is the molecular mechanism for the synergic
inhibition of HIV-1 reverse transcriptase by (R)-(-)-PPO464. J. Biol.
Chem. 2001, 276, 44653–44662.
Experimental Procedures
The synthesis of compounds (()-6 and (()-7 was performed
according to Scheme 1 as reported in SI. We describe herein the
synthesis of the final compounds (()-6 and (()-7.
(()-6-Ethyl-6-[4-(phenyloxymethyl)phenyl]-6,7-dihydropyr-
rolo[1,2-d]pyrido[3,2-b][1,4]oxazepin-7-one ((()-6). To a solution
of phenol (22 mg, 0.23 mmol) in dry tetrahydrofuran (2.0 mL),
sodium tert-butoxide (30 mg, 0.31 mmol) was added, and the
resulting mixture was heated to 40 °C. After 1 h, a solution of
bromide 9 (60 mg, 0.15 mmol) in dry terahydrofuran (2.0 mL) was
slowly added, and the resulting mixture was stirred overnight. The
solvent was removed in vacuo, and the residue was taken up with
dichloromethane. The organic phase was washed with brine, dried,
and concentrated. The residue was purified by means of flash
chromatography (dichloromethane/methanol 19:1) to give (()-6 as
a white amorphous solid (73% yield): 1H NMR (CDCl3) δ 1.08 (t,
3H, J ) 7.4 Hz), 2.42 (q, 2H, J ) 7.5 Hz), 4.92 (s, 2H), 6.47 (m,
1H), 6.75-6.79 (m, 1H), 6.89-6.96 (m, 2H), 7.00-7.05 (m, 1H),
7.13-7.42 (m, 8H), 7.49 (m, 1H), 8.08 (m, 1H). Anal. (C26H22N2O3)
C, H, N.
(9) (a) Fattorusso, C.; Gemma, S.; Butini, S.; Huleatt, P.; Catalanotti, B.;
Persico, M.; De Angelis, M.; Fiorini, I.; Nacci, V.; Ramunno, A.;
Rodriguez, M.; Greco, G.; Novellino, E.; Bergamini, A.; Marini, S.;
Coletta, M.; Maga, G.; Spadari, S.; Campiani, G. Specific targeting
highly conserved residues in the HIV-1 reverse transcriptase primer
grip region. Design, synthesis, and biological evaluation of novel,
potent, and broad spectrum NNRTIs with antiviral activity. J. Med.
Chem. 2005, 48, 7153–7165. (b) Zanoli, S.; Gemma, S.; Butini, S.;
Brindisi, M.; Joshi, B. P.; Campiani, G.; Fattorusso, C.; Persico, M.;
Crespan, E.; Cancio, R.; Spadari, S.; Hu¨bscher, U.; Maga, G. Selective
targeting of the HIV-1 reverse transcriptase catalytic complex through
interaction with the “primer grip” region by pyrrolobenzoxazepinone
non-nucleoside inhibitors correlates with increased selectivity towards
drug-resistant mutants. Biochem. Pharmacol. 2008, 76, 156–168.
(10) Das, K.; Bauman, J. D.; Clark, A. D., Jr.; Frenkel, Y. V.; Lewi, P. J.;
Shatkin, A. J.; Hughes, S. H.; Arnold, E. High-resolution structures
of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility
explains potency against resistance mutations. Proc. Natl. Acad. Sci.
U.S.A. 2008, 105, 1466–1471.
(()-6-Ethyl-6-[4-[(3-chlorophenyloxy)methyl]phenyl]-6,7-di-
hydropyrrolo[1,2-d]pyrido[3,2-b][1,4]oxazepin-7-one ((()-7).
(()-7 was obtained following the procedure described for (()-6.
The residue was purified by flash chromatography (dichloromethane/
methanol 19:1) to give (()-7 as a white amorphous solid (69%
yield): 1H NMR (CDCl3) δ 1.09 (t, 3H, J ) 7.5 Hz), 2.43 (m, 2H),
4.93 (s, 2H), 6.48 (m, 1H), 6.75-6.79 (m, 1H), 6.89-6.94 (m,
2H), 7.00-7.05 (m, 1H), 7.13-7.39 (m, 7H), 7.49 (m, 1H), 8.09
(m, 1H); 13C NMR (75 MHz, CDCl3) δ 8.9, 33.7, 69.7, 94.4, 112.0,
113.5 115.5, 121.5, 122.3, 123.4, 126.8, 127.3, 128.1, 130.5, 132.9,
134.3, 135.1, 136.9, 137.5, 141.9, 143.9, 144.7, 159.5, 189.4; ESI-
MS m/z 445 (M + H)+, 466 (100) (M + Na)+. Anal.
(C26H21ClN2O3) C, H, N.
Acknowledgment. We thank the European Research Centre
for Drug Discovery and Development for financial support. S.Z.
is the recipient of a Buzzati-Traverso Fellowship.
(11) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.;
Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF ChimerasA
Visualization system for exploratory research and analysis. J. Comput.
Chem. 2004, 25, 1605–1612.
Supporting Information Available: Elemental analyses for final
compounds, Table for enzymatic assays, chemistry, experimental
procedures for intermediates, HPLC separation of (()-5 and (()-
JM801395V