Organometallics 2010, 29, 1049–1052 1049
DOI: 10.1021/om900997y
Rhodium-Catalyzed Direct Alkenylation and Arylation of Arene C-H
Bonds via Decarbonylation of Cinnamoyl Chlorides,
Cinnamic Anhydrides, and Poly(aroyl) Chlorides
Wenjing Ye,† Ning Luo,† and Zhengkun Yu*,†,‡
†Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning
116023, People’s Republic of China and ‡State Key Laboratory of Organometallic Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s
Republic of China
Received November 16, 2009
Summary: Efficient regioselective direct alkenylation of
benzo[h]quinoline was realized with cinnamoyl chlorides as
the coupling partners via decarbonylation of the chlorides and
C-H bond activation by means of [Rh(CO)2Cl]2 as the
catalyst in refluxing o-xylene under phosphine-free conditions.
For 2-phenylpyridine, [Rh(CO)2Cl]2 or [Rh(COD)Cl]2 effi-
ciently promoted its direct alkenylation with cinnamic anhy-
drides. Polyarenes were synthesized from [Rh(COD)Cl]2-
catalyzed decarbonylative poly(arylation) of isophthaloyl
dichloride, terephthaloyl dichloride, or benzene-1,3,5-tricar-
bonyl chloride with benzo[h]quinoline.
of arene C-H bonds has become more and more attractive
for construction of carbon-carbon bonds.3 Chelation-as-
sisted functionalization of arenes via C-H bond activation
by using a directing group such as carbonyl,4 imino,5 amino,6
and pyridyl7 has been paid much attention due to the high
regioselectivity of the desired products. Although a lot of
examples of direct arylation of arenes have been documented,
direct alkenylation of arenes has not received considerable
attention. So far, chelation-assisted C-H functionalization
of arenes with alkenylboron reagents,8 alkenes,9 alkynes,10
alkyl acrylates,11 and alkenyl acetates12 has been reported for
this purpose. A variety of coupling partners were successfully
explored, but they have been applied in C-H functionaliza-
tion with limitations.1,13 As potential coupling compounds,
acid chlorides were used for carbon-carbon couplings under
controlled conditions.7c,e,f,14 Although carboxylic acids can
be decarbonylatively transformed by transition metals,15
only a few examples have been scattered.16 Recently,
we found that aroyl chlorides and benzoic and cinnamic
anhydrides can be used as decarbonylative coupling partners
Introduction
Alkenylation is a useful synthetic protocol to prepare
functional materials, natural products, and bioactive mole-
cules.1,2 Recently, transition-metal-catalyzed functionalization
*Corresponding author. E-mail: zkyu@dicp.ac.cn.
(1) For selected recent reviews, see: (a) Denmark, S. E.; Butler, C. R.
Chem. Commun. 2009, 20. (b) Negishi, E.-I.; Huang, Z. H.; Wang, G. W.;
Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41, 1474.
(2) (a) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning,
A. P. H. J. Chem. Rev. 2005, 105, 1491. (b) Wu, J. L.; Cui, X. L.; Chen, L.
M.; Jiang, G. J.; Wu, Y. J. J. Am. Chem. Soc. 2009, 131, 13888. (c) Katagiri,
T.; Mukai, T.; Satoh, T.; Hirano, K.; Miura, M. Chem. Lett. 2009, 38, 118.
(3) For selected recent reviews, see: (a) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (b) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (c) McGlacken, G. P.;
Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (d) Chen, X.; Engle, K. M.;
Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(8) (a) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Org. Chem. 2007, 72,
3600. (b) Ueno, S.; Kochi, T.; Chatani, N.; Kakiuchi, F. Org. Lett. 2009, 11,
855.
(9) (a) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2009, 74, 7094. (b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc.
2008, 130, 14092. (c) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc.
2008, 130, 11876.
(10) (a) Shibata, Y.; Otake, Y.; Hirano, M.; Tanaka, K. Org. Lett.
2009, 11, 689. (b) Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Org.
Lett. 2009, 11, 1821. (c) Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org.
Chem. 2009, 74, 6410. (d) Rodriguez, A.; Fennessy, R. V.; Moran, W. J.
Tetrahedron Lett. 2009, 50, 3942. (e) Li, L.; Brennessel, W. W.; Jones, W. D.
J. Am. Chem. Soc. 2008, 130, 12414. (f) Nakao, Y.; Kanyiva, K. S.; Hiyama,
T. J. Am. Chem. Soc. 2008, 130, 2448. (g) Cheng, K.; Yao, B. B.; Zhao, J. L.;
Zhang, Y. H. Org. Lett. 2008, 10, 5309. (h) Sun, Z. K.; Yu, S. Y.; Ding, Z. D.;
Ma, D. W. J. Am. Chem. Soc. 2007, 129, 9300. (i) Kanyiva, K. S.; Nakao, Y.;
Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.
(4) For selected recent reports, see: (a) Wang, D.-H.; Mei, T.-S.; Yu,
J.-Q. J. Am. Chem. Soc. 2008, 130, 17676. (b) Inoue, S.; Shiota, H.;
Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 6898. (c) Martinez,
R.; Simon, M.-O.; Chevalier, R.; Pautigny, C.; Genet, J.-P.; Darses, S. J. Am.
Chem. Soc. 2009, 131, 7887. (d) Jia, Y.-X.; K€undig, E. P. Angew. Chem., Int.
Ed. 2009, 48, 1636. (e) Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford,
ꢀ
J. G.; Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K.
ꢀ
(11) (a) Garcıa-Rubia, A.; Arrayas, R. G.; Carretero, J. C. Angew.
´
I. Angew. Chem., Int. Ed. 2009, 48, 1830. (f) Zhou, H.; Xu, Y.-H.; Chung,
W.-J.; Loh, T.-P. Angew. Chem., Int. Ed. 2009, 48, 5355. (g) Zhou, H.;
Chung, W.-J.; Xu, Y.-H.; Loh, T.-P. Chem. Commun. 2009, 3472.
(5) (a) Ackermann, L. Org. Lett. 2005, 7, 3123. (b) Yoshikai, N.;
Matsumoto, A.; Norinder, J.; Nakamura, E. Angew. Chem., Int. Ed. 2009,
48, 2925.
Chem., Int. Ed. 2009, 48, 6511. (b) Cho, S. H.; Hwang, S. J.; Chang, S.
J. Am. Chem. Soc. 2008, 130, 9254. (c) Beck, E. M.; Hatley, R.; Gaunt, M. J.
Angew. Chem., Int. Ed. 2008, 47, 3004. (d) Cai, G. X.; Fu, Y.; Li, Y. Z.; Wan,
X. B.; Shi, Z. J. J. Am. Chem. Soc. 2007, 129, 7666. (e) Zaitsev, V. G.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156.
(6) He, H.; Liu, W.-B.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2009,
131, 8346.
(12) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.;
Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858.
(13) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc.
2008, 130, 13285.
(7) Selected recent reports, see: (a) Oi, S.; Aizawa, E.; Ogino, Y.;
Inoue, Y. J. Org. Chem. 2005, 70, 3113. (b) Ackermann, L.; Althammer, A.;
Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. (c) Zhao, X. D.; Yu, Z. K. J.
Am. Chem. Soc. 2008, 130, 8136. (d) Gu, S. J.; Chen, C.; Chen, W. Z. J. Org.
Chem. 2009, 74, 7203. (e) Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.;
Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792. (f) Zhao, X. D.;
(14) (a) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc.
2009, 131, 6668. (b) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Angew.
Chem., Int. Ed. 2003, 42, 4672.
ꢀ
(15) Goossen, L. J.; Goossen, K.; Rodrrguez, N.; Blanchot, M.;
ꢀ
Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
Linder, C.; Zimmermann, B. Pure Appl. Chem. 2008, 80, 1725.
r
2010 American Chemical Society
Published on Web 01/28/2010
pubs.acs.org/Organometallics