The 2-(2-haloalkenyl)-aryl halides used as substrates in the
indole syntheses are readily obtained from the corresponding
o-halo benzaldehydes using simple Wittig chemistry. Accordingly,
we prepared a variety of functionalised substrates to probe the
2 Reviews: (a) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2008,
47, 3096; (b) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev.,
2004, 248, 2337; (c) S. V. Ley and A. W. Thomas, Angew. Chem., Int.
Ed., 2003, 42, 5400.
3 For reports comparing Pd and Cu systems, see: (a) X. Huang, K. W.
Anderson, D. Zim, L. Jiang, A. Klapars and S. L. Buchwald, J. Am.
Chem. Soc., 2003, 125, 6653; (b) C. Enguehard, H. Allouchi, A.
Gueiffier and S. L. Buchwald, J. Org. Chem., 2003, 68, 4367; (c) L. L.
Joyce, G. Evindar and R. A. Batey, Chem. Commun., 2004, 446; (d) G.
Young Cho, P. Re´my, J. Jansson, C. Moessner and C. Bolm, Org. Lett.,
2004, 6, 3293; (e) G. Cuny, M. Bois-Choussy and J. Zhu, J. Am. Chem.
Soc., 2004, 126, 14475.
4 Reviews: (a) R. B. Bedford, C. S. J. Cazin and D. Holder, Coord. Chem.
Rev., 2004, 248, 2283; (b) A. F. Littke and G. C. Fu, Angew. Chem., Int.
Ed., 2002, 41, 4176.
5 Examples: (a) A. Klapars, J. C. Antilla, X. Huang and S. L. Buchwald,
J. Am. Chem. Soc., 2001, 123, 7727; (b) M. L. Kantam, B. P. C. Rao,
B. M. Choudary and R. S. Reddy, Synlett, 2006, 2195; (c) L. D. S. Yadav,
B. S. Yadav and V. K. Rai, Synthesis, 2006, 1868; (d) C. Barberis, T. D.
Gordon, C. Thomas, X. Zhang and K. P. Cusack, Tetrahedron Lett.,
2005, 46, 8877; (e) L. Zhu, L. Cheng, Y. Zhang, R. Xie and J. You,
J. Org. Chem., 2007, 72, 2737.
t
generality of the Cu-catalysed process (Table 3). Bu-carbamate
was used as the N-coupling partner in all examples. A catalyst
derived from CuOAc was found to deliver the most consistent
yields across a variety of substrates, although some variation in
the choice of base was needed. Within these constraints it was
possible to employ substrates featuring a variety of both electron-
donating and electron-withdrawing substituents (entries 1–6). A
limitation of the present method was that two Br-substituents
were needed to achieve efficient reactions. For example, employing
the substrate partnering an alkenyl-chloride with an aryl bromide
delivered the desired indole in a yield of 56% (entry 7); significantly
lower than the corresponding dibromo example (88% yield, table
1 entry 12). The aryl-chloride containing substrate was unreactive
(entry 8).
In summary, we have demonstrated that tandem Cu-catalysed
amination reactions employing 2-(2-haloalkenyl)-aryl halides al-
low the straightforward preparation of N-functionalised indoles.
The range of N-coupling partners that can be used complements
that achievable using Pd-catalysis, with the major advantage being
the successful preparation of N-acyl indoles when employing
the Cu-system. Conversely, couplings employing simple amines
were less efficient when using the Cu-chemistry. Ultimately, the
choice of Pd or Cu catalysis will be determined on a case-by-case
basis, balancing economic considerations of the catalyst and other
reaction components, against the reactivity and efficiency possible
with the two systems.
6 General indole synthesis reviews: (a) G. R. Humphrey and J. T. Kuethe,
Chem. Rev., 2006, 106, 2875; (b) G. W. Gribble, J. Chem. Soc., Perkin
Trans. 1, 2000, 1045; (c) R. J. Sunberg, Indoles, Academic Press,
London, 1996.
7 (a) Palladium in Heterocyclic Chemistry, 2nd Edition, ed. J. J. Li and
G. W. Gribble, Elsevier, Oxford, 2007; (b) G. Zeni and R. C. Larock,
Chem. Rev., 2004, 104, 2285; (c) G. Zeni and R. C. Larock, Chem. Rev.,
2006, 106, 4644; (d) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105,
2873; (e) I. Nakamura and Y. Yamamoto, Chem. Rev., 2004, 104, 2127.
8 Selected recent examples of transition metal based indole syntheses:
(a) Y. Jia and J. Zhu, J. Org. Chem., 2006, 71, 7826; (b) B. M. Trost and A.
McClory, Angew. Chem., Int. Ed., 2007, 46, 2074; (c) M. McLaughlin,
M. Palucki and I. W. Davies, Org. Lett., 2006, 8, 3307; (d) Y.-Q. Fang,
R. Karisch and M. Lautens, J. Org. Chem., 2007, 72, 1341; (e) M.
Nagamochi, Y.-Q. Fang and M. Lautens, Org. Lett., 2007, 9, 2955;
(f) T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen and M.
Jørgensen, Angew. Chem., Int. Ed., 2008, 47, 888; (g) L. Ackermann
and A. Althammer, Angew. Chem., Int. Ed., 2007, 46, 1627.
9 (a) A. J. Fletcher, M. N. Bax and M. C. Willis, Chem. Commun., 2007,
4764; (b) M. C. Willis, G. N. Brace, T. J. K. Findlay and I. P. Holmes,
Adv. Syn. Catal., 2006, 348, 851; (c) M. C. Willis, G. N. Brace and I. P.
Holmes, Angew. Chem., Int. Ed., 2005, 44, 403.
10 Related Cu-catalysed syntheses of pyrroles and heteroarylpyrroles have
been reported: (a) X. Yuan, X. Xu, X. Zhou, J. Yuan, L. Mai and Y. Li,
J. Org. Chem., 2007, 72, 1510; (b) R. Mart´ın, C. H. Larsen, A. Cuenca
and S. L. Buchwald, Org. Lett., 2007, 9, 3379.
Acknowledgements
This work was supported by the EPSRC and Schering Plough,
Newhouse (formerly Organon).
Notes and references
11 For recent examples of Cu-catalysis employed in aromatic heterocycle
synthesis, see: (a) R. D. Viirre, G. Evindar and R. A. Batey, J. Org.
Chem., 2008, 73, 3452; (b) R. Mart´ın, A. Cuenca and S. L. Buchwald,
Org. Lett., 2007, 9, 5521; (c) N. Zheng and S. L. Buchwald, Org. Lett.,
2007, 9, 4749; (d) J. Yuen, Y.-Q. Fang and M. Lautens, Org. Lett., 2006,
8, 653; (e) C. P. Jones, K. W. Anderson and S. L. Buchwald, J. Org.
Chem., 2007, 72, 7968; (f) L. Ackermann, Org. Lett., 2005, 7, 439;
(g) A. C. Tadd, M. R. Fielding and M. C. Willis, Tetrahedron Lett.,
2007, 48, 7578; (h) C.-y. Chen and P. G. Dormer, J. Org. Chem., 2005,
70, 6964; (i) B. Lu, B. Wang, Y. Zhang and D. Ma, J. Org. Chem., 2007,
72, 5337; (j) B. Lu and D. Ma, Org. Lett, 2006, 8, 6115; (k) M. Carril,
R. SanMartin, I. Tellitu and E. Dom´ınguez, Org. Lett., 2006, 8, 1467.
12 (a) A. Klapars, X. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2002,
124, 7421; (b) F. Y. Kwong and S. L. Buchwald, Org. Lett., 2003, 5, 793;
(c) A. Shafir and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 8742;
(d) H. Zhang, Q. Cai and D. Ma, J. Org. Chem., 2005, 70, 5164.
13 (a) G. D. Allred and L. S. Liebeskind, J. Am. Chem. Soc., 1996, 118,
2748; (b) R. Shen and J. A. Porco, Jr., Org. Lett., 2000, 2, 1333.
‡ General procedure for the Cu-catalyst diamination: Table 1, entry
5. Potassium carbonate (316 mg, 2.29 mmol) and tert-butylcarbamate
(179 mg, 1.52 mmol) were added to an oven dried flask charged with
CuI (14 mg, 0.08 mmol) and N,N ¢-dimethylethyldiamine (13 mg, 16 mL,
0.15 mmol) under nitrogen. The reagents were suspended in anhydrous
toluene (0.38 mL) and (Z)-1-bromo-2-(2-bromovinyl)benzene (200 mg,
0.76 mmol) was added. The reaction mixture was stirred for 24 hours at
110 ◦C and then cooled to room temperature. The reaction was diluted
with ethyl acetate, filtered through celite, and reduced under vacuo. The
product was purified by flash chromatography (10% EtOAc: Hexane) to
yield indole (142 mg, 85%) as a yellow oil.
1 (a) Reviews: J. F. Hartwig, in Handbook of Organopalladium Chemistry
for Organic Synthesis, ed. E. I. Negishi, Wiley-Interscience, New York,
2002, vol. 1, pp. 1051; (b) L. Jiang, S. L. Buchwald, in Metal-Catalysed
Cross-Coupling Reactions, ed. A. de Meijere and F. Diederich, Wiley-
VCH, Weinheim, 2004, pp. 699.
434 | Org. Biomol. Chem., 2009, 7, 432–434
This journal is
The Royal Society of Chemistry 2009
©