The Journal of Organic Chemistry
Article
(26) Carlsen, L.; Holm, A.; Koch, E.; Stilkerieg, B. Acta Chem. Scand.
1977, 31b, 679−682.
ACKNOWLEDGMENTS
■
The work was supported by the Ministry of Science and
Innovation (Project Reference CTQ2011-24652). A.J.S.-A.
thanks the Complutense University for a predoctoral grant
(ref. CT4/14).
(27) Prein, M.; Adam, W. Angew. Chem., Int. Ed. Engl. 1996, 35, 477−
494.
(28) Clennan, E. L. Tetrahedron 2000, 56, 9151−9179.
(29) Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref.
Data 1995, 24, 663−1021.
(30) Clennan, E. L.; Greer, A. J. Org. Chem. 1996, 61, 4793−4797.
(31) Back, T. J.; Dyck, B. P.; Parvez, M. J. Org. Chem. 1995, 60, 703−
710.
(32) Crossland, I. Acta Chem. Scand. 1977, 31b, 890−894.
(33) El-Essawy, F. A. G.; Yassin, S. M.; El-Sakka, I. A.; Khattab, A. F.;
Sotofte, I.; Madsen, J. O.; Senning, A. J. Org. Chem. 1998, 63, 9840−
9845.
(34) Hegab, M. I.; Abd El-Galil, A. A.; Abdel-Megeid, F. M. E. Z.
Naturforsch. (B) 2002, 57, 922−927.
(35) Mazzanti, G.; van Helvoirt, E.; van Vliet, L. A.; Ruinaard, R.;
Masiero, S.; Bonini, B. F.; Zwanenburg, B. J. Chem. Soc., Perkin Trans. 1
1994, 3299−3304.
(36) Mazzanti, G.; Ruinaard, R.; van Vliet, L. A.; Zani, P.; Bonini, B.
F.; Zwanenburg, B. Tetrahedron Lett. 1992, 33, 6383−6386.
(37) Block, E.; O'Connor, J. J. Am. Chem. Soc. 1974, 96, 3929−3944.
(38) Davis, F. A.; Jenkins, R. H., Jr. J. Am. Chem. Soc. 1980, 102,
7967−7969.
REFERENCES
■
(1) Rajee, R.; Ramamurthy, V. Tetrahedron Lett. 1978, 19, 5127−
5130.
(2) Jayathirtha Rao, V.; Ramamurthy, V. Indian J. Chem., Sect. B 1980,
19B, 143−145.
(3) Ramnath, N.; Ramesh, V.; Ramamurthy, V. J. Chem. Soc., Chem.
Commun. 1981, 112−114.
(4) Rao, V. J.; Muthuramu, K.; Ramamurthy, V. J. Org. Chem. 1982,
47, 127−131.
(5) Ramnath, N.; Ramesh, V.; Ramamurthy, V. J. Org. Chem. 1983,
48, 214−222.
(6) Arjunan, P.; Ramamurthy, V.; Venkatesan, K. J. Org. Chem. 1984,
49, 1765−1769.
(7) Rao, V. P.; Ramamurthy, V. Tetrahedron 1985, 41, 2169−2176.
(8) Clennan, E. L.; Liao, C. Tetrahedron 2006, 62, 10724−10728.
(9) Maciejewski, A.; Steer, R. P. Chem. Rev. 1993, 93, 67−98.
́
(10) Corsaro, A.; Pistara, V. Tetrahedron 1998, 54, 15027−15062.
(39) Gupta, V.; Carroll, K. S. Biochim. Biophys. Acta, Gen. Subj. 2014,
1840, 847−875.
(40) Li, X. B.; Xu, Z. F.; Liu, L. J.; Liu, J. T. Eur. J. Org. Chem. 2014,
2014, 1182−1188.
(11) Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry;
Blackwell Scientific Publications: Oxford, 1991; pp 518−520.
(12) Zwanenburg, B. J. Sulfur Chem. 2013, 34, 142−157.
(13) Ulrich, H. Cumulenes in Click Reactions; Wiley: Chichester, 2009;
pp 13−23.
(41) Bulman Page, P. C.; Wilkes, R. D.; Reynolds, D. Alkyl
Chalcogenides: Sulfur-based Functional Groups. 2.03.2.1.7 Dialkyl
Sulfides. Formation from alkenes. In Synthesis: Carbon with One
Heteroatom Attached by a Single Bond; Ley, S. V., Vol. Ed. In
Comprehensive Organic Functional Group Transformations; Katritzky, A.
R., Meth-Cohn, O., Rees, C. W., Eds-in-chief; Pergamon: Oxford,
1995; Vol. 2, pp 137−138.
(14) Zwanenburg, B. Recl. Trav. Chim. Pays-Bas-J. R. Neth. Chem. Soc.
1982, 101, 1−27.
(15) Lucassen, A. C. B. Sulfine-based Synthesis of Four-, Five- and
Six-Membered Heterocycles. Ph.D. Thesis, Radboud University
(16) Philipse, H. J. F. Silyl-Mediated and Oxidative Synthesis of
Sulfines. Ph.D. Thesis, Radboud University Nijmegen, Neherlands,
(17) Damen, T. J. G. Synthesis and Reactions of α-Oxo Sulfines and
3,6-Dihydro-2H-thiopyran S-oxides. Ph.D. Thesis, Radboud University
(42) Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem.
2004, 76, 2105−2146.
(43) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of
Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, 2006; Chapter
12, pp 601−616.
́
́
(44) Alvarez García, A. M. Sıntesis estereoselectiva y aplicaciones de
́
nuevos tioderivados con esqueleto norbornanico. Ph.D. Thesis,
Complutense University of Madrid, Spain, September 2008. http://
(45) Maccagnani, G.; Innocenti, A.; Zani, P. J. Chem. Soc., Perkin
Trans. 2 1987, 1113−1116.
(18) Pinto, I. L.; Buckle, D. R.; Rami, H. K.; Smith, D. G. Tetrahedron
Lett. 1992, 33, 7597−7600.
(19) Bastin, R.; Albadri, H.; Gaumont, A. C.; Gulea, M. Org. Lett.
2006, 8, 1033−1036.
(20) García-Fresnadillo, D.; Georgiadou, Y.; Orellana, G.; Braun, A.
M.; Oliveros, E. Helv. Chim. Acta 1996, 79, 1996−1222.
(21) Jensen, F.; Greer, A.; Clennan, E. L. J. Am. Chem. Soc. 1998, 120,
4439−4449.
́
(46) Díez-Mato, E.; Cortezon-Tamarit, F. C.; Bogialli, S.; García-
Fresnadillo, D.; Marazuela, M. D. Appl. Catal., B 2014, 160−161, 445−
455.
(47) Ortiz, M. J.; Agarrabeitia, A. R.; Duran-Sampedro, G.; Prieto, J.
B.; Lopez, T. A.; Massad, W. A.; Montejano, H. A.; Garcia, N. A.;
Arbeloa, I. L. Tetrahedron 2012, 68, 1153−1162.
(22) Clennan, E. L. Acc. Chem. Res. 2001, 34, 875−884.
(23) Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref.
Data 1993, 22, 113−263. It has to be noted that <3% of *[Ru(dip)3]2+
dye is quenched when [1] = 1 mM compared to the very efficient
quenching (> 95%) by dissolved molecular oxygen in both acetonitrile
and methanol (Table S2, SI). Therefore, the steady-state approx-
imation can be applied to all the excited states involved in the
photoprocess (*[Ru(dip)3]2+ and 1O2). The rate of 1 disappearance is
first-order with respect to [1] when the deactivation rate constant, kd,
1
of O2 by the solvent (kd = 1/τΔ, where τΔ is the emission lifetime of
singlet oxygen in the solvent) is much higher than the product kr·
1
[substrate] (where kr is the overall rate constant of O2 depletion in
the presence of the substrate, either by physical quenching or chemical
reaction).
(24) Berlett, B. S.; Levine, R. L.; Stadtman, E. R. Anal. Biochem. 2000,
287, 329−333.
(25) Croce, A. E. Can. J. Chem. 2008, 86, 918−924.
J
J. Org. Chem. XXXX, XXX, XXX−XXX