pubs.acs.org/joc
However, the efficiency of these additions is often limited
Asymmetric Rh(I)-Catalyzed Addition of MIDA
Boronates to N-tert-Butanesulfinyl Aldimines:
Development and Comparison to Trifluoroborates
due to competitive decomposition of the boron reagents. The
same conditions, namely heat, water, and transition-metal
catalysts, that promote the addition of boron reagents also
accelerate their decomposition via pathways such as proto-
deboronation, oxidation, and/or polymerization.5 There-
fore, overcoming these undesired processes has posed a
particular challenge.6
Katrien Brak and Jonathan A. Ellman*
Department of Chemistry, University of California,
Berkeley, California 94720
While boronic acids are highly versatile coupling reagents,7
their limited stability and incompatibility with many synthetic
reagents have resulted in the development of several impor-
tant surrogates. Potassium trifluoroborates,8 and even more
recently N-methyliminodiacetic acid (MIDA) boronates,9
have emerged as particularly attractive alternative organo-
boron coupling partners.10,11 These boron reagents exhibit
exceptional benchtop stability, are easy to synthesize and
isolate, and are compatible with many synthetic reagents.
Furthermore, MIDA boronates are stable to silica gel chro-
matography, allowing for expanded utility in the synthesis of
complex organoboron building blocks.12
Received February 19, 2010
MIDA boronates are inert to many of the common path-
ways of decomposition; however, they are also unreactive
toward transmetalation.13 Burke and co-workers have ele-
gantly demonstrated that cross-coupling of unstable boronic
The Rh(I)-catalyzed addition of alkenyl and aryl MIDA
boronates to N-tert-butanesulfinyl aromatic and aliphatic
imines proceeds in good yields (up to 99%) and with very
high selectivity(98:2to>99:1).Incomparisontotrifluoro-
borates, higher yields and selectivities are observed for the
addition to N-tert-butanesulfinyl aromatic imines. This
new method expands upon the versatility of the Rh(I)-
catalyzed addition of boron reagents to imines, thereby
further enabling the synthesis of chiral R-branched amines.
(5) Protodeboronation of boronic acids occurs under protic conditions
and has been shown to proceed via general acid catalysis: (a) Kuivila, H. G.;
Nahabedian, K. V. J. Am. Chem. Soc. 1961, 83, 2159. Protonation of
Ar-Rh(I) species occurs under acidic conditions: (b) Keim, W. J. J. Organo-
met. Chem. 1968, 14, 179. (c) Boyd, S. E.; Field, L. D.; Hambley, T. W.;
Partridge, M. G. Organometallics 1993, 12, 1720. Lower molecular weight
alkenylboronic acids, such as vinyl and propenylboronic acids, readily
polymerize: (d) Matteson, D. S. J. Am. Chem. Soc. 1960, 82, 4228.
(6) Improved yields have been achieved by the following: (I) Using a large
excess of boronic acid: (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai,
M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579. (II) Slow addition of the
boronic acid: (b) Reference 3c.
(7) Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim, Germany, 2005.
(8) For recent reviews on trifluoroborates, see: Molander, G. A.; Ellis,
N. M. Acc. Chem. Res. 2007, 40, 275. Stefani, H. A.; Cella, R.; Vieira, A. S.
Tetrahedron 2007, 63, 3623. Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108,
288. Molander, G. A.; Canturk, B. Angew. Chem., Int. Ed. 2009, 48, 9240.
(9) For a review on MIDA boronates, see: Gillis, E. P.; Burke, M. D.
Aldrichim. Acta 2009, 42, 17.
The development of efficient and practical methods for
the asymmetric synthesis of chiral, R-branched amines is of
great importance due to the ubiquitous nature of this motif
in pharmaceutical agents and natural products.1 The Rh(I)-
catalyzed addition of boron reagents to activated imines
has emerged as a general, functional-group tolerant method
for the asymmetric synthesis of R-branched amines.2-4
(10) For reviews that compare trifluoroborates, MIDA boronates, and
1,8-diaminonaphthalene boronates, see: (a) Tobisu, M.; Chatani, N. Angew.
Chem., Int. Ed. 2009, 48, 3565. (b) Molander, G. A.; Canturk, B. Angew.
Chem., Int. Ed. 2009, 48, 9240.
(11) For select examples of other alternative organoboron coupling
partners see the following: (I) Sterically bulky boronic esters: (a) Lightfoot,
A. P.; Twiddle, S. J. R.; Whiting, A. Synlett 2005, 3, 529. (b) Yang, D. X.;
Colletti, S. L.; Wu, K.; Song, M.; Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11,
381. (c) Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1998, 39,
8479. (II) Boroximes: (d) Kerins, F.; O’Shea, D. F. J. Org. Chem. 2002, 67,
4968. (e) Hayashi, T.; Ishigedani, M. J. Am. Chem. Soc. 2000, 122, 976.
(f) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem.
Soc. 2004, 126, 8128. (III) Tetraarylborates: (g) Noguchi, H.; Hojo, K.;
Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. (IV) Trialkoxyborate salts:
(h) Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1999, 40,
6957. (i) Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Angew.
Chem., Int. Ed. 2008, 47, 928. (V) Trihydroxyborate salts: (j) Cammidge,
A. N.; Goddard, V. H. M.; Gopee, H.; Harrison, N. L.; Hughes, D. L.;
Schubert, C. J.; Sutton, B. M.; Watts, G. L.; Whitehead, A. J. Org. Lett. 2006,
8, 4071. (VI) Diethanolamine adducts: (k) Gravel, M.; Thompson, K. A.;
Zak, M.; Berube, C.; Hall, D. G. J. Org. Chem. 2002, 67, 3. (l) Bonin, H.;
Delbrayelle, D.; Demonchaux, P.; Gras, E. Chem. Comm. 2010. DOI: 10.1039/
b926547n. (VII) 1,8-diaminonaphthalene adduct: (m) Noguchi, H.; Hojo, K.;
Suginome, M. J. Am. Chem. Soc. 2007, 129, 758.
(1) Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.;
Sturmer, R.; Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788.
(2) The first report of a Rh(I)-catalyzed addition of arylboronic acids to
imines: Ueda, M.; Saito, A.; Miyaura, N. Synlett 2000, 11, 1637.
(3) Asymmetric Rh(I)-catalyzed arylboron additions to imines:
(a) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem.
Soc. 2004, 126, 8128. (b) Tokunaga, N.; Otomaru, Y.; Okamoto, K.;
Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126,
13584. (c) Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127,
1092. (d) Bolshan, Y.; Batey, R. A. Org. Lett. 2005, 7, 1481. (e) Jagt, R. B. C.;
Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J.
Angew. Chem., Int. Ed. 2006, 45, 2789. (f) Duan, H.-F.; Jia, Y.-X.; Wang,
L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567. (g) Wang, Z.-Q.; Feng, C.-G.;
Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336. (h) Nakagawa, H.;
Rech, J. C.; Sindelar, R. W.; Ellman, J. A. Org. Lett. 2007, 9, 5155.
(i) Trincado, M.; Ellman, J. A. Angew. Chem., Int. Ed. 2008, 47, 5623.
(4) Asymmetric Rh(I)-catalyzed alkenylboron additions to imines: Brak,
K.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 3850.
(12) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084.
(13) Gillis, E. P.; Burke, M. B. J. Am. Chem. Soc. 2007, 129, 6716.
DOI: 10.1021/jo100318s
r
Published on Web 04/13/2010
J. Org. Chem. 2010, 75, 3147–3150 3147
2010 American Chemical Society