997 (s); dH (400 MHz, d6-DMSO) 7.87 (1H, d, J 6.52 Hz, OCHOH,
major isomer, disappears upon D2O exchange), 7.69 (1H, d, J
4.02 Hz, OCHOH, minor isomer, disappears upon D2O exchange),
6.18 (1H, d, J 5.77 Hz, CH2CHOH, major isomer, disappears
upon D2O exchange), 6.13 (1H, d, J 6.53 Hz CH2CHOH, minor
isomer, disappears upon D2O exchange), 5.14 (1H, m, OCHOH,
minor isomer, simplifies to ddd, J 7.0, 5.2 and 1.7 Hz upon D2O
exchange), 4.90 (1H, m, OCHOH, major isomer, simplifies to
app. dd, J 14.7 and 3.9 Hz), 3.40–3.89 (3H, m, 2 ¥ CF2CH +
CHH), 3.81 (1H, t, J 10.4 Hz, CHH, minor isomer), 3.66 (1H,
m, CHH, minor isomer), 3.42 (1H, t, J 10.3 Hz, CHH, major
isomer); dC (100 MHz, d6-DMSO) 91.4 (m, OCHOH, major
isomer), 90.9 (dd, J 35.1 and 24.3 Hz, OCHOH, minor isomer),
66.6–66.1 (m, 2 ¥ CH2CH), 62.7 (d, J 6.8 Hz, CH2, major isomer),
60.0 (CH2, minor isomer); dF (376 MHz, d6-DMSO, recorded
at 50 ◦C) -121.25 (1F, br d, J 261.0 Hz, CF2CFFCH), -127.15
(1F, br d, J 250.7 Hz, CF2CFFCH), -128.87 (1F, bdd, J 253.3
and 13.4 Hz, CF2CFFCH), -130.95 (1F, ddd, J 252.6, 16.7 and
5.8 Hz, CHCFFCF2), -132.66 (1F, br d, J 254.5 Hz, CF2CFFCH),
-132.86 (1F, ddd, J 214.3, 16.1 and 4.9 Hz Hz, CHCFFCF2),
-133.54 (1F, ddd, J 223.2, 16.1 and 6.5 Hz, CHCFFCF2), -136.80
(1F, ddd, J 257.9, 16.8 and 5.4 Hz, CHCFFCF2); ESMS (ES-)
m/z 189 (M - H+, 100%), 161 (12), 149 (8), 129 (22); HRMS (ES+)
for C5H6F4NaO3 (M + Na)+ calcd 213.0145, found 213.0148.
minor isomer), -129.39 (1F, dddd, J 247.8, 18.2, 16.1 and 6.4 Hz,
CFFCHOH, major isomer), -132.32 (1F, dddd, J 261.8, 15.0,
9.7 and 5.4 Hz, CFFCHOH, minor isomer), -133.88 (1F, m,
CFFCHOH, major isomer); ESMS (ES+) m/z 243 ((M + Na)+,
55), 139 (100); HRMS (ES+) for C6H8F4NaO4 (M + Na)+ calcd
243.0257, found 243.0251.
Acknowledgements
AJB thanks GlaxoSmithKline and EPSRC for a CASE stu-
dentship. RST thanks ORS for a stipend. KJB thanks Dextra
Laboratories and EPSRC for a CASE studentship. We thank Luke
W. Judd for starting with the monobenzylation experiments. We
are grateful to Prof. R. J. Whitby and Dr Martin Swarbrick for
support. We also wish to acknowledge the use of the EPSRC’s
Chemical Database service at Daresbury.37
References and notes
1 (a) A. Varki, Glycobiology, 1993, 3, 97–130; (b) L. A. Lasky, Annu.
Rev. Biochem., 1995, 64, 113–139; (c) R. A. Dwek, Chem. Rev., 1996,
96, 683–720; (d) H. Lis and N. Sharon, Chem. Rev., 1998, 98, 637–674;
(e) P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson and R. A. Dwek,
Science, 2001, 291, 2370–2376; (f) G. E. Ritchie, B. E. Moffatt, R. B.
Sim, B. P. Morgan, R. A. Dwek and P. M. Rudd, Chem. Rev., 2002, 102,
305–319; (g) R. S. Haltiwanger and J. B. Lowe, Annu. Rev. Biochem.,
2004, 73, 491–537.
2 (a) A. Helenius, Mol. Biol. Cell, 1994, 5, 253–265; (b) E. S. Trombetta
and A. Helenius, Curr. Opin. Struct. Biol., 1998, 8, 587–592; (c) A.
Helenius and M. Aebi, Science, 2001, 291, 2364–2369.
(5R)-2-Hydroxymethyl-3,3,4,4-tetrafluoro tetrahydropy-ran-
2,5-diol (3,4-dideoxy-3,3,4,4-tetrafluorofructopyranose) (7)
3 (a) A. C. Weymouth-Wilson, Nat. Prod. Rep., 1997, 14, 99–110; (b) J. M.
Langenhan, B. R. Griffith and J. S. Thorson, J. Nat. Prod., 2005, 68,
1696–1711; (c) J. S. Thorson, T. J. Hosted, Jr., J. Jiang, J. B. Biggins and
J. Ahlert, Curr. Org. Chem., 2001, 5, 139–167.
4 (a) K. J. Doores, D. P. Gamblin and B. G. Davis, Chem.–Eur. J., 2006, 12,
656–665; (b) B. G. Davis, Science, 2004, 303, 480–482; (c) B. G. Davis,
Chem. Rev., 2002, 102, 579–601; (d) S. A. W. Gruner, E. Locardi, E.
Lohof and H. Kessler, Chem. Rev., 2002, 102, 491–514; (e) T. K. Ritter
and C.-H. Wong, Angew. Chem., Int. Ed., 2001, 40, 3508–3533; (f) K. M.
Koeller and C.-H. Wong, Nat. Biotechnol., 2000, 18, 835–841; (g) G. D.
Armstrong, Curr. Opin. Drug Discovery Dev., 2000, 3, 191–202; (h) P.
Sears and C.-H. Wong, Angew. Chem., Int. Ed., 1999, 38, 2300–2324;
(i) L. A. Marcaurelle and C. R. Bertozzi, Chem.–Eur. J., 1999, 5, 1384–
1390.
5 (a) M. Ambrosi, N. R. Cameron and B. G. Davis, Org. Biomol. Chem.,
2005, 3, 1593–1608; (b) R. U. Lemieux, Acc. Chem. Res., 1996, 29,
373–380; (c) E. J. Toone, Curr. Opin. Struct. Biol., 1994, 4, 719–728.
6 (a) N. F. Burkhalter, S. M. Dimick, E. J. Toone, in Carbohydrates in
Chemistry and Biology, ed. B. Ernst, G. W. Hart, P. Sinay, Wiley-VCH,
Weinheim, 2000, ch. 31; (b) R. U. Lemieux, Chem. Soc. Rev., 1989, 18,
347–374.
To a stirred solution of 3 (0.50 g, 1.25 mmol) in EtOAc (10 mL) was
added Pd(OH)2/C (10% Pd/C, 0.40 g). The flask was evacuated
and purged with H2. This sequence was repeated twice more
and then the reaction allowed to stir for 16 h. The reaction was
diluted with EtOAc (30 mL) and then filtered through celite. The
residue was washed with EtOAc (2 ¥ 30 mL) and the combined
filtrates concentrated in vacuo. The resulting oil was purified by
column chromatography (petroleum ether–acetone, 60 : 40) to
give a colourless oil (0.26 g, 96%), which was found to be 7 as
an inseparable mixture of anomers (ratio approximately 14 : 1).
n
max(film)/cm-1 3354 (br m), 1698 (m), 1150 (s), 1094 (s), 1046 (s),
870 (s); dH (400 MHz, d6-DMSO) 6.83 (1H, br s, OH, major
isomer), 6.70 (1H, br s, OH, minor isomer), 6.10 (1H, br s, OH,
major isomer), 5.96 (1H, br s, OH, minor isomer), 5.13 (2H, m,
2 ¥ CH2OH, major and minor isomer), 4.09 (1H, d, J 12.8 Hz,
CHHOH, minor isomer), 3.90 (2H, m, 2 ¥ CHOH), 3.77 (1H,
t, J 10.39 Hz, CHCHH, major isomer), 3.65 (1H, m, CHCHH,
major + minor isomer), 3.58 (1H, d, J 12.1 Hz, CHHOH, major
isomer), 3.53 (1H, app. s, CHHOH, minor isomer), 3.48 (1H,
d, J 11.8, CHHOH, major isomer); dC (100 MHz, d6-DMSO)
95.6 (dd, J 29.2 and 21.9 Hz, CCF2, major isomer, signal minor
isomer is obscured), 67.9 (dd, J 30.8 and 18.7 Hz, CHCF2, minor
isomer), 66.0 (t, J 18.95 Hz, CHCF2, major isomer), 61.7 (CH2OH,
major isomer), 61.6 (CH2OH, minor isomer), 59.4 (d, J 7.3 Hz,
2 ¥ CH2OC, major isomer, signal minor isomer is obscured); dF
(282 MHz, d6-DMSO referenced to CFCl3) -115.83 (1F, ddt, J
260.0, 15.0 and 7.5 Hz, CFFCOH, minor isomer), -123.80 (1F,
ddd, J 261.8, 17.2 and 7.5 Hz, CFFCOH, minor isomer), -124.51
(1F, m, J 262.2 can be observed, CFFCOH, major isomer),
-128.06 (1F, m, J 248.2 Hz can be seen, CFFCHOH, major
isomer), -128.27 (1F, m, J 260.5 Hz can be seen, CFFCOH,
7 J. Gao, S. Qiao and G. M. Whitesides, J. Med. Chem., 1995, 38, 2292–
2301.
8 (a) H. W. Kim, P. Rossi, R. K. Schoemaker and S. G. DiMagno, J. Am.
Chem. Soc., 1998, 120, 9082–9083; (b) J. C. Biffinger, H. W. Kim and
S. G. DiMagno, ChemBioChem, 2004, 5, 622–627.
9 K. Mu¨ller, C. Faeh and F. Diederich, Science, 2007, 317, 1881–1886.
10 (a) A. J. Boydell, V. Vinader and B. Linclau, Angew. Chem., Int. Ed.,
2004, 43, 5677–5679; (b) R. S. Timofte and B. Linclau, Org. Lett., 2008,
10, 3673–3676.
11 R. P. Singh, U. Majumder and J. Schreeve, J. Org. Chem., 2001, 66,
6263–6267.
12 J. M. Percy, Top. Curr. Chem., 1997, 193, 131–195.
13 (a) H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev.,
1994, 94, 2483–3547; (b) A. B. Zaitsev and H. Adolfsson, Synthesis,
2006, 1725–1756.
14 B. Linclau, Chim. Oggi, 2007, 25, 51–54.
15 (a) K. P. M. Vanhessche and K. B. Sharpless, Chem.–Eur. J., 1997,
3, 517–522; (b) H. Becker and K. B. Sharpless, Angew. Chem., Int.
Ed. Engl., 1996, 35, 448–451; (c) C. Do¨bler, G. M. Mehltretter,
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 803–814 | 813
©