Molecules 2020, 25, 1527
8 of 10
(2-Fluorophenyl)(phenyl)methyl benzoate (3u): colorless liquid, 84% yield (51.5 mg), 1H NMR (400 MHz,
CDCl3, ppm) 8.15 (d, J = 7.5 Hz, 2H), 7.47–7.60 (m, 6H), 7.28–7.37 (m, 5H), 7.15 (t, J = 7.4 Hz, 1H), 7.07
(t, J = 9.2 Hz, 1H); 13C NMR (100 MHz, CDCl3, ppm)
165.3, 160.1 (d, J = 246.8 Hz), 139.4, 133.2, 130.2,
δ
δ
129.8, 129.7 (d, J = 8.2 Hz), 128.6, 128.5, 128.1, 128.1, 127.9 (d, J = 13.2 Hz), 126.9, 124.3 (d, J = 3.6 Hz),
115.8 (d, J = 21.3 Hz), 71.8 (d, J = 2.9 Hz). MS (EI) m/z (%) 306, 184 (100), 165, 105, 77. HRMS calcd. for:
C20H15FNaO2 [M]+: m/z 329.09483, found m/z 329.09526.
(4-Chlorophenyl)(phenyl)methyl benzoate (3v): colorless liquid, 78% yield (50.4 mg), 1H NMR (400 MHz,
CDCl3, ppm)
NMR (100 MHz, CDCl3, ppm)
128.2, 127.1, 76.8. MS (EI) m/z (%) 322, 200, 165 (100), 105, 77.
δ C
8.13 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.31–7.49 (m, 11H), 7.08 (s, 1H); 13
δ
165.5, 139.9, 138.9, 133.9, 133.3, 131.5, 129.8, 128.8, 128.7, 128.6, 128.5,
(4-Tert-butylphenyl)(phenyl)methyl benzoate (3w): colorless liquid, 76% yield (52.4 mg), 1H NMR (400 MHz,
CDCl3, ppm) 8.15 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.1 Hz, 1H), 7.44–7.47 (m, 4H), 7.29–7.37 (m, 7H), 7.11
(s, 1H), 1.30 (s, 9H); 13C NMR (100 MHz, CDCl3, ppm)
165.6, 150.9, 140.5, 137.3, 133.0, 130.5, 129.8,
δ
δ
128.5, 128.4, 127.8, 127.1, 127.0, 125.5, 77.4, 34.6, 31.3; MS (EI) m/z (%) 344, 239, 222 (100), 207, 105, 77;
HRMS calcd. for: C24H24NaO2 [M + Na]+: 367.1669, found 367.1669.
(4-Chlorophenyl)(p-tolyl)methyl benzoate (3x): colorless liquid, 72% yield (48.5 mg), 1H NMR (400 MHz,
CDCl3, ppm)
δ
8.12 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.31–7.37 (m, 6H),
165.5, 139.1, 138.0,
7.17 (d, J = 7.7 Hz, 2H), 7.05 (s, 1H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm)
δ
136.9, 133.8, 133.2, 130.2, 129.8, 129.4, 128.7, 128.5, 128.5, 127.1, 76.7, 21.1. MS (EI) m/z (%) 336, 214 (100),
179 (100), 165, 105, 77. HRMS calcd. for: C21H17ClNaO2 [M]+: m/z 359.08093, found m/z 359.08145.
(4-Nitrophenyl)(phenyl)methyl benzoate (3y): colorless liquid, 40% yield (26.7 mg), 1H NMR (400 MHz,
CDCl3, ppm)
δ
8.22 (d, J = 8.5 Hz, 2H), 8.14 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 8.4 Hz, 3H), 7.49 (t, J = 7.6 Hz,
165.3, 147.4, 138.9, 133.5, 130.7,
2H), 7.34–7.44 (m, 5H), 7.16 (s, 1H).13C NMR (100 MHz, CDCl3, ppm)
δ
130.1, 129.8, 128.9, 128. 7, 128.6, 127.8, 127.3, 123.9, 76.5. MS (EI) m/z (%) 333, 211, 165, 105 (100), 77.
N-Benzhydrylbenzamide (4a) [28]: white solid, 62% yield (35.6 mg), 1H NMR (400 MHz, CDCl3, ppm)
δ
7.85 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 7.32–7.40 (m, 10H), 6.68 (d, J
= 6.8 Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H); 13C NMR (100 MHz, CDCl3, ppm)
166.6, 141.5, 134.3, 131.7,
δ
131.0, 128.8, 128.7, 127.6, 127.1, 57.5. MS (EI) m/z (%) 287, 182, 165, 105 (100), 77.
N-Benzhydrylbenzenesulfonamide (4b) [29]: white solid, 76% yield (49.2 mg), 1H NMR (400 MHz, CDCl3,
ppm)
δ
7.70 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.11–7.23 (m, 10H), 5.63
140.4, 132.4, 131.0,
(d, J = 7.2 Hz, 1H), 5.11 (d, J = 6.8 Hz, 1H); 13C NMR (100 MHz, CDCl3, ppm)
δ
128.8, 128.6, 127.7, 127.4, 127.2, 61.4. MS (EI) m/z (%) 322, 246, 182 (100), 167, 104, 77.
N-Benzhydryl-4-methylbenzenesulfonamide (4c) [29]: white solid, 70% yield (47.2 mg), 1H NMR (400 MHz,
CDCl3, ppm)
1H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm)
61.4, 21.4. MS (EI) m/z (%) 336, 182 (100), 167, 91, 77.
δ
7.50 (d, J = 8.0 Hz, 2H), 7.04–7.20 (m, 12H), 5.51 (d, J = 6.8 Hz, 1H), 4.94 (d, J = 6.4 Hz,
δ
143.1, 140.7, 137.6, 129.3, 128.5, 127.5, 127.4, 127.2,
N-Benzhydrylmethanesulfonamide (4d) [30]: white solid, 67% yield (35.0 mg), 1H NMR (400 MHz, CDCl3,
ppm)
7.36–7.41 (m, 10H), 5.79 (d, J = 6.8 Hz, 1H), 4.99 (d, J = 6.4 Hz, 1H), 2.30 (s, 3H); 13C NMR
δ
(100 MHz, CDCl3, ppm)
104, 77.
δ 140.7, 128.9, 128.0, 127.5, 61.3, 41.9. MS (EI) m/z (%) 259, 180 (100), 165,
4. Conclusions
In summary, we have developed a DDQ-promoted esterification and amination of benzylic C–H
bonds under metal- and iodide-free conditions. A close to equal amount of coupling reagents is enough
to afford the product in good to high yields. Functional groups, such as methyl, methoxy, fluoro, chloro,
and bromo, were all well tolerated under the optimized reaction conditions. This method affords an