Organic Letters
Letter
Accession Codes
proceeded via 3a as an intermediate. Furthermore, the reaction
of Sn(OTf)2 and 3-benzyl-3-(tert-butylperoxy)indolin-2-one in
acetonitrile-d3 was performed in an NMR tube. The notable
peaks was observed at 6.82, singlet which belongs to alkene C−
H of arylidine product 2a. Moreover, at 4.66 ppm (septet) and
1.71 (triplet) was also observed, which arises due to the
presence of isobutylene (see Figure S2 in the SI).
Based on the experimental results and previous literature
reports,16a,b,17 a plausible reaction mechanism for Sn-catalyzed
rearrangement is illustrated in Figure 3. Mechanistically, the
CCDC 1889817 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the DST-SERB, (No. EMR/
2014/000700) and Council of Scientific and Industrial
Research [No. 02(0296/17/EMR-II)], India. M.B.C. thanks
IISER-Pune for a research fellowship. B.G. thanks SERB and
CSIR-India for the financial support.
REFERENCES
■
(1) (a) The Chemistry of Peroxides; Patai, S., Ed.; Wiley−
Interscience: New York, 1983. (b) Horn, E. J.; Rosen, B. R.; Chen,
Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533,
77−81. (c) Liu, W.; Li, Y.; Liu, K.; Li, Z. J. Am. Chem. Soc. 2011, 133,
10756−10759. (d) Wei, Y.; Ding, H.; Lin, S.; Liang, F. Org. Lett.
2011, 13, 1674−1677. (e) Jia, F.; Li, Z. Org. Chem. Front. 2014, 1,
194−214.
Figure 3. Sn(OTf)2-catalyzed plausible mechanism for the rearrange-
ment.
catalytic cycle initiated by the coordination of peroxy O−O
bond of 1 with A to give B. The deprotonation of B
commenced by in-situ-generated triflate anion give D with the
liberation of isobutylene C (confirmed by GC-MS and NMR).
Following the protonation of SnOTf-chelated oxygen D with
TfOH, endoperoxide E is obtained. A ring expansion is
attributed to C3−C4 carbon shift onto oxygen of HO-SnOTf
in E to give the carbocation F and Sn(OH)OTf in a concerted
passion. The triflate anion will abstract the proton from F to
stabilize the carbocation and afford product 2. Subsequently,
catalyst A is regenerated by the reaction of Sn(OH)OTf and
Tf−OH.
In summary, we have discovered a novel biomimetic cascade
rearrangement of 3-peroxy-2-oxindoles that delivers predom-
inantly (Z)-2-arylidene or alkylidene-2H-benzo[b][1,4]oxazin-
3(4H)-one derivatives in the presence of Lewis/Brønsted
acids. Interestingly, in the case of FeCl3, a Hock rearrangement
was observed, which can be used to probe the homolytic versus
heterolytic cleavage. Based on the experimental results, a
plausible mechanism has been proposed, and further detailed
investigation for the rearrangement is in progress in our
laboratory.
(2) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33,
493−532.
(3) Hock, H.; Lang, S. Ber. Dtsch. Chem. Ges. B 1944, 77, 257−264.
(4) (a) Brinkhorst, J.; Nara, S. J.; Pratt, D. A. J. Am. Chem. Soc. 2008,
130, 12224−12225. (b) Yin, H.; Xu, L.; Porter, N. A. Chem. Rev.
2011, 111, 5944−5972. (c) Spickett, C. M. Redox Biol. 2013, 1, 145−
152. (d) Grechkin, A. N.; Bruhlmann, F.; Mukhtarova, L. S.; Gogolev,
̈
Y. V.; Hamberg, M. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2006,
1761, 1419−1428. (e) Mita, G.; Quarta, A.; Fasano, P.; De Paolis, A.;
Di Sansebastiano, G. P.; Perrotta, C.; Iannacone, R.; Belfield, E.;
Hughes, R.; Tsesmetzis, N.; Casey, R.; Santino, A. J. Exp. Bot. 2005,
56, 2321−2333.
(5) (a) Yablokov, V. A. Russ. Chem. Rev. 1980, 49, 833−842.
(b) Yaremenko, I. A.; Vil’, V. A.; Demchuk, D. V.; Terent’ev, A. O.
Beilstein J. Org. Chem. 2016, 12, 1647−1748.
(6) (a) Murahashi, S.-I.; Naota, T.; Miyaguchi, N.; Noda, S. J. Am.
Chem. Soc. 1996, 118, 2509−2510. (b) Terent’ev, A. O.; Platonov, M.
M.; Kashin, A. S.; Nikishin, G. I. Tetrahedron 2008, 64, 7944−7948.
(c) Zheng, X.; Lu, S.; Li, Z. Org. Lett. 2013, 15, 5432−5435.
(7) (a) Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32,
3625−3633. (b) Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1900,
33, 858−864. (c) Krow, G. R. The Baeyer−Villiger Oxidation of
Ketones and Aldehydes. In Organic Reactions, Vol. 43; Paquette, L. A.,
Ed.; Wiley: New York, 1993; pp 251−279. (d) Vil’, V. A.; dos Passos
Gomes, G.; Bityukov, O. V.; Lyssenko, K. A.; Nikishin, G. I.;
Alabugin, I. V.; Terent’ev, A. O. Angew. Chem., Int. Ed. 2018, 57,
3372−3376; Angew. Chem. 2018, 130, 3430−3434. (e) Zhou, L.; Liu,
X.; Ji, J.; Zhang, Y.; Hu, X.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2012,
134, 17023−17026. (f) Strukul, G. Angew. Chem., Int. Ed. 1998, 37,
1198−1209. (g) Wang, Z. Baeyer−Villiger Oxidation; Comprehensive
Organic Name Reactions and Reagents; John Wiley & Sons, 2010; pp
150−155.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectroscopic data for the
(8) (a) Criegee, R. Justus Liebigs Ann. Chem. 1948, 560, 127−135.
(b) Davies, A. G. Organic Peroxides; Butterworths, London, 1961.
D
Org. Lett. XXXX, XXX, XXX−XXX