Bioconjugate Chemistry
Article
(11) Foerg, C., and Merkle, H. P. (2008) On the biomedical promise
of cell penetrating peptides: Limits versus prospects. J. Pharm. Sci. 97,
144−162.
synthesize a new class hybrid peptoids (5-, 7-, and 9-mers) on
solid phase. The fluorescein tagged 9-mer hybrid peptoid H9,
constructed of alternating units of the aminohexyl and amino-
TEG monomers, showed superior cellular uptake on three cell
lines when compared to the traditional lysine-like peptoid of
the same length. The inability of the peptoids assembled purely
from the TEG-based monomer to enhance cellular uptake
emphasized the importance of the hybrid structure on transport
properties. Their remarkable cellular uptake and non-
cytotoxicity highlight the potential of these hybrid peptoids
as cellular transporters for biomedical applications.
(12) Weeks, B. S., Desai, K., Loewenstein, P. M., Klotman, M. E.,
Klotman, P. E., Green, M., and Kleinman, H. K. (1993) Identification
of a novel cell attachment domain in the HIV-1 Tat protein and its 90-
kDa cell surface binding protein. J. Biol. Chem. 268, 5279−5284.
(13) Debaisieux, S., Rayne, F., Yezid, H., and Beaumelle, B. (2012)
The Ins and Outs of HIV-1 Tat. Traffic 13, 355−363.
(14) Derossi, D., Chassaing, G., and Prochiantz, A. (1998) Trojan
peptides: the penetratin system for intracellular delivery. Trends Cell
Biol. 8, 84−87.
̈
(15) Pooga, M., Hallbrink, M., Zorko, M., and Langel, U. (1998) Cell
penetration by transportan. FASEB J. 12, 67−77.
̈
ASSOCIATED CONTENT
■
(16) Foerg, C., Ziegler, U., Fernandez-Carneado, J., Giralt, E.,
Rennert, R., Beck-Sickinger, A. G., and Merkle, H. P. (2005) Decoding
the entry of two novel cell-penetrating peptides in HeLa Cells: Lipid
raft-mediated endocytosis and endosomal escape. Biochemistry 44, 72−
81.
S
* Supporting Information
Supporting figures and schemes, and experimental procedures
and analytical data for all compounds are included. The
Supporting Information is available free of charge on the ACS
(17) Jiao, C.-Y., Delaroche, D., Burlina, F., Alves, I. D., Chassaing, G.,
and Sagan, S. (2009) Translocation and endocytosis for cell-
penetrating peptide internalization. J. Biol. Chem. 284, 33957−33965.
̈
(18) Madani, F., Lindberg, S., Langel, U., Futaki, S., and Graslund, A.
̈
AUTHOR INFORMATION
(2011) Mechanisms of cellular uptake of cell-penetrating peptides. J.
Biophys. 2011, 1−10.
■
Corresponding Author
(19) Ryser, H. J. P., and Shen, W.-C. (1978) Conjugation of
methotrexate to poly(L-lysine) increases drug transport and over-
comes drug resistance in cultured cells. Proc. Natl. Acad. Sci. U. S. A. 75,
3867−3870.
Notes
The authors declare no competing financial interest.
(20) Rothbard, J. B., Garlington, S., Lin, Q., Kirschberg, T., Kreider,
E., McGrane, P. L., Wender, P. A., and Khavari, P. A. (2000)
Conjugation of arginine oligomers to cyclosporin A facilitates topical
delivery and inhibition of inflammation. Nat. Med. 6, 1253−1257.
(21) Wender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T.,
Steinman, L., and Rothbard, J. B. (2000) The design, synthesis, and
evaluation of molecules that enable or enhance cellular uptake:
Peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97,
13003−13008.
(22) Mitchell, D. J., Steinman, L., Kim, D. T., Fathman, C. G., and
Rothbard, J. B. (2000) Polyarginine enters cells more efficiently than
other polycationic homopolymers. J. Pept. Res. 56, 318−325.
(23) Simon, R. J., Kania, R. S., Zuckermann, R. N., Huebner, V. D.,
Jewell, D. A., Banville, S., Ng, S., Wang, L., Rosenberg, S., and
Marlowe, C. K. (1992) Peptoids: a modular approach to drug
discovery. Proc. Natl. Acad. Sci. U. S. A. 89, 9367−9371.
(24) Peretto, I., Sanchez-Martin, R. M., Wang, X. H., Ellard, J.,
Mittoo, S., and Bradley, M. (2003) Cell penetrable petoid carrier
vehicles: synthesis and evaluation. Chem. Commun., 2312−2313.
(25) Chongsiriwatana, N. P., Patch, J. A., Czyzewski, A. M., Dohm,
M. T., Ivankin, A., Gidalevitz, D., Zuckermann, R. N., and Barron, A. E.
(2008) Peptoids that mimic the structure, function, and mechanism of
helical antimicrobial peptides. Proc. Natl. Acad. Sci. U. S. A. 105, 2794−
2799.
(26) Diaz-Mochon, J. J., Fara, M. A., Sanchez-Martin, R. M., and
Bradley, M. (2008) Peptoid dendrimers - Microwave-assisted solid-
phase synthesis and transfection agent evaluation. Tetrahedron Lett. 49,
923−926.
(27) Zuckermann, R. N., and Kodadek, T. (2009) Peptoids as
potential therapeutics. Curr. Opin. Mol. Ther. 11, 299−307.
(28) Chen, X., Wu, J., Luo, Y., Liang, X., Supnet, C., Kim, M. W.,
Lotz, G. P., Yang, G., Muchowski, P. J., Kodadek, T., and
Bezprozvanny, I. (2011) Expanded polyglutamine-binding peptoid as
a novel therapeutic agent for treatment of Huntington’s disease. Chem.
Biol. 18, 1113−1125.
ACKNOWLEDGMENTS
■
We thank the MTEM School of Chemistry Studentship for
funding TSJ, Caja Madrid and Ramon Areces Foundation for
funding AMPL, and University of Edinburgh (Innovation
Initiative Grant) for financial support.
REFERENCES
■
(1) Allen, T. M., and Cullis, P. R. (2004) Drug delivery systems:
Entering the mainstream. Science 303, 1818−1822.
(2) Reischl, D., and Zimmer, A. (2009) Drug delivery of siRNA
therapeutics: potentials and limits of nanosystems. Nanomedicine 5, 8−
20.
(3) Shin, M. C., Zhang, J., Min, K. A., Lee, K., Byun, Y., David, A. E.,
He, H., and Yang, V. C. (2014) Cell-penetrating peptides: Achieve-
ments and challenges in application for cancer treatment. J. Biomed.
Mater. Res., Part A 102, 575−587.
(4) Tuma, P. L., and Hubbard, A. L. (2003) Transcytosis: Crossing
cellular barriers. Physiol. Rev. 83, 871−932.
(5) Diao, L., and Meibohm, B. (2013) Pharmacokinetics and
pharmacokinetic-pharmacodynamic correlations of therapeutic pep-
tides. Clin. Pharmacokinet. 52, 855−868.
(6) Murphy, J. E., Uno, T., Hamer, J. D., Cohen, F. E., Dwarki, V.,
and Zuckermann, R. N. (1998) A combinatorial approach to the
discovery of efficient cationic peptoid reagents for gene delivery. Proc.
Natl. Acad. Sci. U. S. A. 95, 1517−1522.
(7) Xu, Z. P., Zeng, Q. H., Lu, G. Q., and Yu, A. B. (2006) Inorganic
nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci.
61, 1027−1040.
(8) Vasir, J. K., and Labhasetwar, V. (2007) Biodegradable
nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Delivery
Rev. 59, 718−728.
(9) Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., and Jin, F.
(2014) Recent progress of cell-penetrating peptides as new carriers for
intracellular cargo delivery. J. Controlled Release 174, 126−136.
(10) Stewart, K. M., Horton, K. L., and Kelley, S. O. (2008) Cell-
penetrating peptides as delivery vehicles for biology and medicine. Org.
Biomol. Chem. 6, 2242−2255.
(29) Tan, N. C., Yu, P., Kwon, Y.-U., and Kodadek, T. (2008) High-
throughput evaluation of relative cell permeability between peptoids
and peptides. Bioorg. Med. Chem. 16, 5853−5861.
(30) Fowler, S. A., and Blackwell, H. E. (2009) Structure-function
relationships in peptoids: Recent advances toward deciphering the
F
Bioconjugate Chem. XXXX, XXX, XXX−XXX