1998
Organometallics 2009, 28, 1998–2000
Isolation and Characterization of a Nucleophilic Allylic Indium
Reagent
Makoto Yasuda, Masahiko Haga, and Akio Baba*
Department of Applied Chemistry and Center for Atomic and Molecular Technologies, Graduate School of
Engineering, Osaka UniVersity, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
ReceiVed February 8, 2009
or dienes with hydroindium;5 (ii) transmetalation of a parent
Summary: Transmetalation between allylic stannanes and in-
dium halides gaVe allylic indium dihalides. The bond length of
In-C is 2.172 Å, which is close to the reported aVerage
indium-carbon bond length. The isolated allylic indium dibro-
mide with two phthalan ligands showed nucleophilicity for a
carbonyl compound.
allylic metal species with indium halides.6 Only a few reports
have proffered a structural discussion of allylic indiums. Araki
and Butsugan generated the allylic indium species using a
reductive method and considered the species as allylindium
sesquihalide3a,c or allylindium dihalide,3b by NMR spectroscopic
analysis. Chan employed a reductive method and proved the
formation of allylindium(I) in aqueous media and allylindium(I)/
allylindium dibromide in organic solvent or ionic liquid.3f,k In
the reaction system using allylstannane and InCl3, the generation
of allylic indium species via transmetalation was assumed by
observing the halostannane byproduct.6b Despite extensive
synthetic studies on allylic indium, the pure isolation and X-ray
analysis of allylic indium7 with the potential for nucleophilic
allylation have never been reported, as far as we know. Recently
a reactive propargylic indium, a system related to the allylic
indium, was investigated on the basis of X-ray crystallographic
characterization.8 The establishment of a structural discussion
of allylic indium is indispensable for the development of the
chemistry of allylic indium and, furthermore, for other related
organometallic nucleophiles. In this communication, introducing
bulky substituents and external ligands realized the isolation of
an allylic indium compound from the corresponding stannane
with indium trihalide. Herein, we describe its structural analysis
on the basis of X-ray crystallography and reactivity of the
isolated allylic indium species.
Reactions of allylic indium species have been extensively
studied in recent years, in particular for the alkylation of
carbonyl compounds.1 A number of reports have appeared
regarding stereoselective reactions and aqueous media reactions
using allylic indium species.2 The methods used to generate
allylic indium can be classified into two types: (i) a reductive
process using either allylic halides with low-valent indium3,4
* To whom correspondence should be addressed. E-mail: baba@
chem.eng.osaka-u.ac.jp.
(1) Auge´, J.; Germain, N. L.; Uziel, J. Synthesis 2007, 1739–1764.
(2) (a) Li, C. J. Chem. ReV. 1993, 93, 2023–2035. (b) Li, C. J.
Tetrahedron 1996, 52, 5643–5668. (c) Loh, T. P.; Chua, G. L. Chem.
Commun. 2006, 2739–2749.
(3) Examples using organo halides with low-valent indium species: (a)
Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem. 1988, 53, 1833–1835. (b)
Araki, S.; Ito, H.; Katsumura, N.; Butsugan, Y. J. Organomet. Chem. 1989,
369, 291–296. (c) Araki, S.; Shimizu, T.; Johar, P. S.; Jin, S.; Butsugan, Y.
J. Org. Chem. 1991, 56, 2538–2542. (d) Li, C. J.; Chan, T. H. Tetrahedron
Lett. 1991, 32, 7017–7020. (e) Kim, E.; Gordon, D. M.; Schmid, W.;
Whitesides, G. M. J. Org. Chem. 1993, 58, 5500–5507. (f) Isaac, M. B.;
Chan, T. H. Tetrahedron Lett. 1995, 36, 8957–8960. (g) Paquette, L. A.;
Rothhaar, R. R. J. Org. Chem. 1999, 64, 217–224. (h) Chan, T. H.; Yang,
Y. J. Am. Chem. Soc. 1999, 121, 3228–3229. (i) Loh, T. P.; Tan, K. T.;
Hu, Q.-Y. Tetrahedron Lett. 2001, 42, 8705–8708. (j) Huang, J. M.; Xu,
K. C.; Loh, T. P. Synthesis 2003, 755–764. (k) Tan, K. T.; Chng, S. S.;
Cheng, H.-S.; Loh, T. P. J. Am. Chem. Soc. 2003, 125, 2958–2963. (l)
Min, J. H.; Jung, S. Y.; Wu, B.; Oh, T. J.; Lah, M. S.; Koo, S. Org. Lett.
2006, 8, 1459–1462. (m) Law, M. C.; Cheung, T. W.; Wong, K. Y.; Chan,
T. H. J. Org. Chem. 2007, 72, 923–929. (n) Yadav, J. S.; Reddy, B. V. S.;
Vishnumurthy, P.; Biswas, S. K. Tetrahedron Lett. 2007, 48, 6641–6643.
(o) Babu, S. A.; Yasuda, M.; Baba, A. J. Org. Chem. 2007, 72, 10264–
10267. (p) Tan, K. L.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46,
1315–1317. (q) Colombo, F.; Cravotto, G.; Palmisano, G.; Penoni, A.; Sisti,
M. Eur. J. Org. Chem. 2008, 2801–2807. (r) Hirashita, T.; Daikoku, Y.;
Osaki, H.; Ogura, M.; Araki, S. Tetrahedron Lett. 2008, 49, 5411–5413.
(4) Examples using organo halides with low-valent indium mediated
by other metals: (a) Li, X. R.; Loh, T. P. Tetrahedron: Asymmetry 1996, 7,
1535–1538. (b) Araki, S.; Kamei, T.; Hirashita, T.; Yamaura, H.; Kawai,
M. Org. Lett. 2000, 2, 847–849. (c) Anwar, U.; Grigg, R.; Rasparini, M.;
Savic, V.; Sridharan, V. Chem. Commun. 2000, 645–646. (d) Anwar, U.;
Grigg, R.; Sridharan, V. Chem. Commun. 2000, 933–934. (e) Takemoto,
Y.; Anzai, M.; Yanada, R.; Fujii, N.; Ohno, H.; Ibuka, T. Tetrahedron Lett.
2001, 42, 1725–1728. (f) Anzai, M.; Yanada, R.; Fujii, N.; Ohno, H.; Ibuka,
T.; Takemoto, Y. Tetrahedron 2002, 58, 5231–5239. (g) Kang, S. K.; Lee,
S. W.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67, 4367–4379. (h) Araki, S.;
Kambe, S.; Kameda, K.; Kirashita, T. Synthesis 2003, 751–754. (i) Cooper,
I. R.; Grigg, R.; MacLachlan, W. S.; Sridharan, V.; Thornton-Pett, M.
Tetrahedron Lett. 2003, 44, 403–405. (j) Miyabe, H.; Yamaoka, Y.; Naito,
T.; Takemoto, Y. J. Org. Chem. 2004, 69, 1415–1418. (k) Grigg, R.;
Blacker, J.; Kilner, C.; McCaffrey, S.; Savic, V. Tetrahedron 2008, 64,
8177–8181. (l) Cleghorn, L. A. T.; Grigg, R.; Savic, V.; Simic, M.
Tetrahedron 2008, 64, 8731–8737.
We chose a transmetalation method to investigate an allylic
indium species, because the method would simply give the
desired allylic indium and a reductive method could generate
two types of species.3 The mixture of allyltributylstannane (1a)
with either InCl3 or InBr3 was examined in acetonitrile. The
NMR spectra of the mixture showed halostannane but no allylic
signals, perhaps because the generated allylindium species was
unstable. Changing the solvent to THF, which was expected to
stabilize the indium species by coordination, gave a reasonable
NMR spectrum. The formation of halostannane and the appear-
ance of allylic signals without satellites by 119Sn coupling
indirectly proved the generation of an allylindium species (see
the Supporting Information). The substituted allylic stannane
(5) (a) Hayashi, N.; Honda, H.; Yasuda, M.; Shibata, I.; Baba, A. Org.
Lett. 2006, 8, 4553–4556. (b) Hayashi, N.; Honda, H.; Shibata, I.; Yasuda,
M.; Baba, A. Synlett 2008, 1407–1411.
(6) (a) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1995, 60, 1920–
1921. (b) Yasuda, M.; Miyai, T.; Shibata, I.; Baba, A. Tetrahedron Lett.
1995, 36, 9497–9500. (c) Marshall, J. A. Chem. ReV. 1996, 96, 31–47. (d)
Inoue, K.; Shimizu, Y.; Shiata, I.; Baba, A. Synlett 2001, 1659–1661. (e)
Donnelly, S.; Thomas, E. J.; Arnott, E. A. Chem. Commun. 2003, 1460–
1461.
(7) A dinuclear complex of allylindium including a PInPIn core was
reported, but its nucleophilicity was not discussed: Culp, R. D.; Cowley,
A. H.; Decken, A.; Jones, R. A. Inorg. Chem. 1997, 36, 5165–5172.
(8) Xu, B.; Mashuta, M. S.; Hammond, G. B. Angew. Chem., Int. Ed.
2006, 45, 7265–7267.
10.1021/om900096r CCC: $40.75
2009 American Chemical Society
Publication on Web 03/12/2009