M. Okada et al. / Tetrahedron 65 (2009) 2136–2141
2141
4.4.3. Synthesis of benzyl [(2R,4S)-4-(4-benzyloxybenzyl)-2-
phenyl-5-oxodioxolan-4-yl]acetate (þ)-5
from the regression curve (R2>0.999). Quantitative analysis was
performed by injection of the bioactive aqueous fraction at
0.25 g FWequiv/mL in the same condition. The peak area was
7.15ꢂ106. The content of (R)-(ꢁ)-1 in L. japonicus was calculated to
According to the abovementioned procedure for (ꢁ)-5, 4
(92.1 mg, 0.256 mmol) gave (þ)-5 (84.0 mg, 0.165 mmol, 65%) as
30
a white powder. [
a
]
þ47.9 (c 0.50, CHCl3).
be 244 mmol/kg fresh weight.
D
4.4.4. Synthesis of (R)-(ꢁ)-1 (eucomic acid)
Acknowledgements
To a solution of (ꢁ)-5 (63.1 mg, 0.124 mmol) in MeOH (5 mL)
was added 5% Pd/C (60 mg). After the reaction mixture was stirred
under a H2 atmosphere overnight, the mixture was filtered through
Celite and washed with 50% aqueous MeOH (3ꢂ5 mL). After
evaporation, the residue was purified by HPLC on an ODS column
(4.6ꢂ250 mm, Develosil ODS-HG-5, Nomura Chemical Co., Ltd.) at
a flow rate of 0.5 mL/min with 15% MeOH (retention time: 22.5–
23.0 min). The purified fraction was concentrated and freeze-dried
to give pure (R)-(ꢁ)-1 (eucomic acid) (26.1 mg, 89%) as a white
We thank the National Bioresource Project for providing seeds
of L. japonicus Gifu B-129. We extend our gratitude to the RIKEN
Genomic Sciences Center for the use of 800 MHz NMR spectrom-
eter system equipped with a cold probe and thank Dr. Hiroshi
Hirota and Dr. Fumiaki Hayashi for conducting NMR experiments.
We also thank Dr. Noboru Takada, Dr. Takashi Tokunaga, and Ms.
Shizuka Ishikawa for the collection of plant material and prepara-
tion of plant extracts.
28
24
powder. [
a]
ꢁ12.9 (c 0.50, MeOH); lit14
[a
]
ꢁ13ꢃ2 (c 1.08, H2O).
D
D
References and notes
4.4.5. Synthesis of (S)-(þ)-1
According to the abovementioned procedure for (R)-(ꢁ)-1, (þ)-5
(36.1 mg, 71.0 mol, 81%) as
mol) gave (S)-(þ)-1 (13.8 mg, 57.5
a white powder. [
1. The C. elegans Sequencing Consortium. Science 1998, 282, 2012–2018.
2. Adams, M. D.; Celniker, S. E.; Holt, R. A.; Evans, C. A.; Gocayne, J. D.; Amanatides,
P. G.; Scherer, S. E.; Li, P. W.; Hoskins, R. A.; Galle, R. F.; George, R. A.; Lewis, S. E.;
Richards, S.; Ashburner, M.; Henderson, S. N.; Sutton, G. G.; Wortman, J. R.;
Yandell, M. D.; Zhang, Q.; Chen, L. X.; Brandon, R. C.; Rogers, Y. C.; Blazej, R. G.;
Champe, M.; Pfeiffer, B. D.; Wan, K. H.; Doyle, C.; Baxter, E. G.; Helt, G.; Nelson,
C. R.; Gabor Miklos, G. L.; Abril, J. F.; Agbayani, A.; An, H.-J.; Andrews-Pfannkoch,
C.; Baldwin, D.; Ballew, R. M.; Basu, A.; Baxendale, J.; Bayraktaroglu, L.; Beasley,
E. M.; Beeson, K. Y.; Benos, P. V.; Berman, B. P.; Bhandari, D.; Bolshakov, S.;
Borkova, D.; Botchan, M. R.; Bouck, J.; Brokstein, P.; Brottier, P.; Burtis, K. C.;
Busam, D. A.; Butler, H.; Cadieu, E.; Center, A.; Chandra, I.; Cherry, J. M.; Cawley,
S.; Dahlke, C.; Davenport, L. B.; Davies, P.; De Pablos, B.; Delcher, A.; Deng, Z.;
Mays, A. D.; Dew, I.; Dietz, S. M.; Dodson, K.; Doup, L. E.; Downes, M.; Dugan-
Rocha, S.; Dunkov, B. C.; Dunn, P.; Durbin, K. J.; Evangelista, C. C.; Ferraz, C.;
Ferriera, S.; Fleischmann, W.; Fosler, C.; Gabrielian, A. E.; Garg, N. S.; Gelbart, W.
M.; Glasser, K.; Glodek, A.; Gong, F.; Gorrell, J. H.; Gu, Z.; Guan, P.; Harris, M.;
Harris, N. L.; Harvey, D.; Heiman, T. J.; Hernandez, J. R.; Houck, J.; Hostin, D.;
Houston, K. A.; Howland, T. J.; Wei, M.-H.; Ibegwam, C.; Jalali, M.; Kalush, F.;
Karpen, G. H.; Ke, A.; Kennison, J. A.; Ketchum, K. A.; Kimmel, B. E.; Kodira, C. D.;
Kraft, C.; Kravitz, S.; Kulp, D.; Lai, Z.; Lasko, P.; Lei, Y.; Levitsky, A. A.; Li, J.; Li, Z.;
Liang, Y.; Lin, X.; Liu, X.; Mattei, B.; McIntosh, T. C.; McLeod, M. P.; McPherson,
D.; Merkulov, G.; Milshina, N. V.; Mobarry, C.; Morris, J.; Moshrefi, A.; Mount, S.
M.; Moy, M.; Murphy, B.; Murphy, L.; Muzny, D. M.; Nelson, D. L.; Nelson, D. R.;
Nelson, K. A.; Nixon, K.; Nusskern, D. R.; Pacleb, J. M.; Palazzolo, M.; Pittman, G.
S.; Pan, S.; Pollard, J.; Puri, V.; Reese, M. G.; Reinert, K.; Remington, K.; Saunders,
R. D. C.; Scheeler, F.; Shen, H.; Christopher Shue, B.; Side´n-Kiamos, I.; Simpson,
M.; Skupski, M. P.; Smith, T.; Spier, E.; Spradling, A. C.; Stapleton, M.; Strong, R.;
Sun, E.; Svirskas, R.; Tector, C.; Turner, R.; Venter, E.; Wang, A. H.; Wang, X.;
Wang, Z.-Y.; Wassarman, D. A.; Weinstock, G. M.; Weissenbach, J.; Williams, S.
M.; Woodage, T.; Worley, K. C.; Wu, D.; Yang, S.; Yao, A. Q.; Ye, J.; Yeh, R.-F.;
Zaveri, J. S.; Zhan, M.; Zhang, G.; Zhao, Q.; Zheng, L.; Zheng, X. H.; Zhong, F. N.;
Zhong, W.; Zhou, X.; Zhu, S.; Zhu, X.; Smith, H. O.; Gibbs, R. A.; Myers, E. W.;
Rubin, G. M.; Venter, J. C. Science 2000, 287, 2185–2195.
m
m
27
a
]
þ12.3 (c 0.50, MeOH).
D
4.5. Chiral HPLC analyses of synthetic (S)-(D)-1, (R)-(L)-1,
and naturally occurring 1
The purified naturally occurring 1, synthetic (S)-(þ)-1, and (R)-
(ꢁ)-1 were analyzed by HPLC on a chiral column (Sumichiral OA-
3100, 4.6ꢂ250 mm, Sumitomo Chemical Co., Ltd., Japan) with 0.1 M
NH4OAc in MeOH and 1,4-dioxane (1:1) (flow rate: 1.5 mL/min,
detection: 280 nm). These chromatograms and retention times are
shown in Figure 4.
4.6. Cation analysis of naturally occurring 1
The cation’s content in purified natural leaf-opening factor (R)-
(ꢁ)-1 was analyzed by capillary electrophoresis using an Agilent CE
system and Cation Solution Kit (Agilent Co., Ltd., USA). Separations
were performed on 64.5 cm long fused-silica capillaries with 50 mm
I.D. Before each analysis, the capillary was rinsed for 4 min with
running buffer containing 20 mM imidazole and 1.0 mM 18-crown-
6, and 0.5 mM lactic acid adjusted to pH 4.5 with acetic acid.
Sample solution was injected with a pressure of 50 mbar for 4.0 s.
The separation run was conducted over 5 min at 20 ꢀC at a constant
voltage of þ20 kV. Detection was performed by indirect UV moni-
toring; the signal wavelength was set at 310 nm and the reference
at 215 nm. The negative UV peaks of analytes were inverted by
reference to a signal wavelength of 310 nm. The content of each
cation was calculated using peak area compared to internal
standards.
3. The Arabidopsis Genome Initiative. Nature 2000, 408, 796–815.
4. Mouse Genome Sequencing Consortium. Nature 2002, 420, 520–562.
5. International Human Genome Sequencing Consortium. Nature 2004, 431, 931–
945.
6. Handberg, K.; Stougaard, J. Plant J. 1992, 2, 487–496.
7. Kawaguchi, M. J. Plant Res. 2000, 113, 507–509.
8. Stougaard, J. Curr. Opin. Plant Biol. 2001, 4, 328–335.
9. de Mairan, J. J. D. Observation botanique. In Histoire de l’Academie Royale des
Sciences; Imprimerie royale: Paris, 1729; pp 35–36.
10. Darwin, C. The Power of Movement in Plants; John Murray: London, 1880.
11. Ueda, M.; Yamamura, S. Angew. Chem., Int. Ed. 2000, 39, 1400–1414.
12. Ueda, M.; Nakamura, Y. Nat. Prod. Rep. 2006, 23, 548–557.
4.7. Quantitative analysis of (R)-(L)-1 in the extract
of L. japonicus
13. Ueda, M.; Nakamura, Y. Plant Cell Physiol. 2007, 48, 900–907.
14. Heller, W.; Tamm, C. Helv. Chim. Acta 1974, 57, 1766–1784.
15. Mun’im, A.; Negishi, O.; Ozawa, T. Biosci. Biotechnol. Biochem. 2003, 67, 410–414.
16. Burke, A. J.; Maycock, C. D.; Ventura, M. R. Org. Biomol. Chem. 2006, 4,
2361–2363.
17. Lohray, B. B.; Kothari, H. M.; Lohray, V. B.; Barot, V. K. G. World Patent
Application WO2005019152, March 3, 2005.
18. Nakamura, Y.; Miyatake, R.; Matsubara, A.; Kiyota, H.; Ueda, M. Tetrahedron
2006, 62, 8805–8813.
A
triacontyl column (2.0ꢂ150 mm, Develosil RPAQUEOUS,
Nomura Chemical, Tokyo) was attached to an LC system and 5 L of
m
sample solution was eluted at a flow rate of 0.2 mL/min with 35%
aqueous CH3OH with 0.1% formic acid for 16 min. LC/ESI-MS (neg-
ative) was acquired in extracted ion chromatograms scan mode of
m/z 239. Calibration was established by peak areas for injection of
(R)-(ꢁ)-1 solution at 50, 75, and 100
m
M, which were 5.99ꢂ106,
19. Nakamura, Y.; Miyatake, R.; Ueda, M. Angew. Chem., Int. Ed. 2008, 47,
7289–7292.
20. Yashiroda, Y.; Matsuyama, A.; Yoshida, M. Curr. Opin. Chem. Biol. 2008, 12, 55–59.
9.19ꢂ106, and 1.21ꢂ107 area (retention time: 6.3 min), respectively.
The intensity of (R)-(ꢁ)-1 was calculated to be 2.43ꢂ104 area/pmol