Paper
RSC Advances
3 (a) T. E. Nielsen and S. L. Schreiber, Angew. Chem., Int. Ed.,
2008, 47, 48–56; (b) H. Oguri and S. L. Schreiber, Org. Lett.,
2005, 7, 47–50.
Table 5 Determination of MIC and MBC by the tube dilution method
Compounds
Organism
MIC (mM)
MBC (mM)
4 (a) M. D. Burke, E. M. Berger and S. L. Schreiber, Science,
2003, 302, 613–618; (b) R. J. Spandl, A. Bender and D.
R. Spring, Org. Biomol. Chem., 2008, 6, 1149–1158.
24
27
28
29
31
32
33
30
35
37
P. Aeruginosa
"
"
"
"
"
"
E. Coli
E. Faecalis
"
1.58 ¡ 0.1
1.62 ¡ 0.1
0.63 ¡ 0.03
0.76 ¡ 0.03
0.61 ¡ 0.03
0.83 ¡ 0.02
1.56 ¡ 0.08
1.40 ¡ 0.07
1.45 ¡ 0.07
0.62 ¡ 0.03
3.16 ¡ 0.15
3.24 ¡ 0.16
2.52 ¡ 0.12
3.04 ¡ 0.15
2.44 ¡ 0.12
3.32 ¡ 0.16
3.12 ¡ 0.15
2.8 ¡ 0.14
2.91 ¡ 0.14
1.24 ¡ 0.06
5 (a) W. M. Golebiewski and I. D. Spenser, Can. J. Chem.,
1988, 66, 1734–1748; (b) E. E. van Tamelen and R. L. Foltz,
J. Am. Chem. Soc., 1969, 91, 7372–7377; (c) D. H. Hua,
Synthesis, 191, 970–974; (d) D. Lesma, Eur. J. Org. Chem.,
2001, 1377–1383; (e) T. Gallagher and D. Gray, Angew.
Chem., Int. Ed., 2006, 45, 2419–2423; (f) L. Mandell, J. Am.
Chem. Soc., 1963, 85, 2683–2684; (g) J. Chen, J. Chem. Soc.,
Chem. Commun., 1986, 905–907; (h) S. Z. Zard, Angew.
Chem., Int. Ed., 1998, 37, 1128–1131; (i) R. H. Robson and L.
F. Prescott, Br. J. Clin. Pharmacol., 1979, 7, 81–87; (j) D.
P. Rainey, E. B. Smalley, M. H. Crump and F. M. Strong,
Nature, 1965, 205, 203–204; (k) C. W. Robinson and K.
A. Woerpel, J. Org. Chem., 1999, 64, 1434–1435; (l)
H. Krawczyk, L. Albrecht, J. Wojciechowski, W. M. Wolf,
U. Krajewska and M. Rozalski, Tetrahedron, 2008, 64,
6307–6314; (m) R. K. Dieter and K. Lu, Tetrahedron Lett.,
1999, 40, 4011–4014; (n) S. Berlin, C. Ericsson and
L. Engman, J. Org. Chem., 2003, 68, 8386–8396; (o)
C. Escolano, M. Amat and J. Bosch, Chem.–Eur. J., 2006,
12, 8198–8207; (p) O. Bassas, N. Lior, M. M. M. Santos,
R. Griera, E. Molins, M. Amat and J. Bosch, Org. Lett., 2005,
7, 2817–2820.
ings, which can provide activities ideal for further investiga-
tion as potential lead compounds for med-chem programmes.
Conclusion
In summary, we have developed an efficient TiCl4 catalyzed
method for the Michael addition of Evans oxazolidinones with
nitro olefins. We have also demonstrated a catalytic asym-
metric version of this reaction with good yields and decent
diastereoselectivity. To evaluate the potential of these nitro
adducts as building blocks for diversity oriented synthesis
(DOS) they were further converted to biologically relevant
heterocycles viz. quinolizidinones, piperidinones and pyrroli-
dinones under facile reaction conditions. In silico analysis is
utilized to evaluate the diversity of the set of compounds
against shape space (PMI), polar surface area (PSA) calcula-
tions and relevant drug like properties (viz. HBA, HBD, PSA,
mol. wt., log P and Log D). Finally, the molecules were
screened against microorganisms to assess their biological
activity.
6 (a) R. Smith, Tetrahedron, 1979, 35, 437–489; (b) R. Smith,
´
Phytochemistry, 1983, 22, 1055–1056; (c) R. G. Arrayas,
A. Alcudia and L. S. Liebeskind, Org. Lett., 2001, 3,
3381–3383.
7 (a) M. A. Katzman, CNS Drugs, 2009, 23, 103–120; (b) I.
M. Anderson, J. Affective Disord., 2000, 58, 19–36; (c) S.
A. Montgomery, Int. Clin. Psychopharmacol., 2001, 16,
169–178; (d) D. E. Griswold, E. F. Webb, J. Breton, J.
R. White, P. J. Marshall and T. J. Torphy, Inflammation,
1993, 17(3), 333–344; (e) H. Wachtel, Neuropharmacology,
1983, 22(3), 267–272; (f) C. R. Maxwell, S. J. Kanes, T. Abel
and S. J. Siegel, Neuroscience, 2004, 129(1), 101–107; (g) S.
J. Kanes, J. Tokarczyk, S. J. Siegel, W. Bilker, T. Abel and M.
P. Kelly, Neuroscience, 2006, 144(1), 239–246.
Acknowledgements
The authors acknowledge GVK Bioscience for the funding.
8 (a) D. C. Rees, M. Congreve, C. W. Murray and R. Carr, Nat.
Rev. Drug Discovery, 2004, 3, 660–665; (b) M. Congreve,
R. Carr, C. W. Murray and H. Jhoti, Drug Discovery Today,
2003, 8, 876–879.
References
1 (a) M. D. Burke and S. L. Schreiber, Angew. Chem., Int. Ed.,
2004, 43, 46–58; (b) A. L. Hopkins and C. R. Groom, Nat.
Rev. Drug Discovery, 2002, 1, 727–730; (c) J. Drews and
S. Ryser, Nat. Biotechnol., 1996, 14, 1516–1518; (d) H. An, S.
-J. Eum, M. Koh, S. K. Lee and S. B. Park, J. Org. Chem.,
2008, 73, 1752–1761; (e) D. B. Ramachary, C. Venkaiah, Y.
V. Reddy and M. Kishore, Org. Biomol. Chem., 2009, 7,
2053–2062.
2 (a) W. R. J. D. Galloway, A. Bender, M. Welch and D.
R. Spring, Chem. Commun., 2009, 2446–2462; (b) W. R. J.
D. Galloway and D. R. Spring, Expert Opin. Drug Discovery,
2009, 4, 467–472; (c) W. R. J. D. Galloway, A. I. -Llobet and
D. R. Spring, Nat. Commun., 2010, 1–13.
9 (a) S. Albrecht, J-M. Adam, U. Bromberger, R. Diodone,
A. Fettes, R. Fischer, V. Goeckel, S. Hildbrand, G. Moine
and M. Weber, Org. Process Res. Dev., 2011, 15, 503–514; (b)
¨
M. Bohringer, H. Fischer, M. Hennig, D. Hunziker,
J. Huwyler, B. Kuhn, B. M. Loffler, T. Lubbers, P. Mattei,
R. Narquizian, E. Sebokova, U. Sprecher and H. P. Wessel,
Bioorg. Med. Chem. Lett., 2010, 20, 1106–1109; (c)
M. Bohringer, B. Kuhn, T. Lubbers, P. Mattei,
R. Narquizian, H. P. Wessel (F. Hoffmann-La Roche AG).
U.S. Pat. Appl. 2004/0259902, 2004.
10 (a) C. E. Katz and J. Aube, J. Am. Chem. Soc., 2003, 125,
13948–13949; (b) M. Kenji, Tetrahedron: Asymmetry, 2005,
16, 685–692; (c) M. -A. Kim, J. Y. Kim, K. -S. Song, J. Kim
and J. Lee, Tetrahedron, 2007, 63, 12845–12852; (d) Refer
2410 | RSC Adv., 2013, 3, 2404–2411
This journal is ß The Royal Society of Chemistry 2013