J. Am. Chem. Soc. 2001, 123, 4451-4458
4451
Stereoelectronic Control in Addition of Nucleophiles to an
Amidinium Ion
Charles L. Perrin* and David B. Young
Contribution from the Department of Chemistry, UniVersity of California-San Diego,
La Jolla, California 92093-0358
ReceiVed December 11, 2000
Abstract: Nucleophilic addition to 1,3-dimethyl-5-phenyl-1,4,5,6-tetrahydropyrimidinium ion provides a
quantitative measure of stereoelectronic control. This amidinium ion presents the nucleophile with two distinct
paths for attack. Axial attack is favored by interaction between the orbital of the developing bond and
antiperiplanar lone pairs on the nitrogens. Reaction of the amidinium salt with diverse nucleophiles (D-, H3C-,
n-Bu-, PhCH2-, allyl-, Ph-, C5F6-, CH2dCH-, HCtC-, PhCtC-, CN-) produces mixtures of cis and trans
stereoisomers. Both kinetic and thermodynamic product distributions were measured by 1H NMR, before and
after acid-catalyzed equilibration. The values provide insight into the roles of steric and stereoelectronic forces
at the transition state and in products. Stereoelectronic effects on reactivity are found to be weak (ca. 1 kcal/
mol).
Introduction
intermediates by Deslongchamps, who hypothesized that cleav-
age is favored by two lone pairs antiperiplanar to the leaving
group.3
Antiperiplanar Lone Pairs. Stereoelectronic control, arising
from the positioning of lone pairs, is a topic of much current
interest.1 The aspect relevant to thermodynamic stabilities is
known as the anomeric effect.2 In connection with reactivity it
was first applied at the acetal level of oxidation, where an
antiperiplanar lone pair is expected to facilitate bond cleavage.3
This preference, often called the antiperiplanar lone-pair hy-
pothesis (ALPH) or the kinetic anomeric effect, is supported
by calculations.4 Yet experimental evidence is weak or elusive,5
except that an orthogonal lone pair is indisputably less effective
than a periplanar one.6 The ALPH was extended to tetrahedral
The role of antiperiplanar lone pairs is a fundamental aspect
of the dependence of chemical reactivity on structural features.
It is still an area of considerable uncertainty and controversy,7
with wide acceptance8 and only occasional skepticism.9
To what extent does an antiperiplanar lone pair facilitate
cleavage of a tetrahedral intermediate? Early evidence came
from hydrolysis of a cyclic hemiorthoester, which opens to
hydroxy ester, rather than lactone.10 Nevertheless, a serious
inconsistency is that the five-membered-ring hemiorthoester also
gives hydroxy ester, even though it ought to have cleaved to
(1) Kirby, A. J. The Anomeric and Related Stereoelectronic Effects at
Oxygen; Springer-Verlag: Berlin, 1983. Juaristi, E.; Cuevas, G. Tetrahedron
1992, 48, 5019. Thatcher, G. R. J., Ed.; The Anomeric Effect and Associated
Stereoelectronic Effects; ACS Symposium Series, American Chemical
Society: Washington, DC, 1993. Thibaudeau, C.; Chattopadhyaya, J.
Stereoelectronic Effects in Nucleosides and Nucleotides and their Structural
Implications; Uppsala University Press: 1999.
(5) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am.
Chem. Soc. 1999, 121, 12208. Dios, A.; Nativi, C.; Capozzi, G.; Franck,
R. W. Eur. J. Org. Chem. 1999, 1869. Zhu, J.; Bennet, A. J. J. Am. Chem.
Soc. 1998, 120, 3887. Moreau, C.; Lecomte, J.; Mseddi, S.; Zmimita, N. J.
Mol. Catal. A 1997, 125, 143. Bellucci, G.; Chiappe, C.; D’Andrea, F.; Lo
Moro, G. Tetrahedron 1997, 53, 3417.
(2) Alabugin, I. V. J. Org. Chem. 2000, 65, 3910. Box, V. G. S. J. Mol.
Struct. 2000, 522, 145. Carballeira, L.; Perez-Juste, I. J. Comput. Chem.
2000, 21, 462. Anderson, J. E. J. Org. Chem. 2000, 65, 748. Randell, K.
D.; Johnston, B. D.; Green, D. F.; Pinto, B. M. J. Org. Chem. 2000, 65,
220. Perrin, C. L.; Fabian, M. A.; Brunckova, J.; Ohta, B. K. J. Am. Chem.
Soc. 1999, 121, 6911. Uehara, F.; Sato, M.; Kaneko, C.; Kurihara, H. J.
Org. Chem. 1999, 64, 1436. Juaristi, E.; Cuevas, G. Tetrahedron 1999, 55,
359. Alber, F.; Folkers, G.; Carloni, P. J. Phys. Chem. B 1999, 103, 6121.
Mo, Y.; Zhang, Y.; Gao, J. J. Am. Chem. Soc. 1999, 121, 5737. Kirby, A.
J.; Komarov, I. V.; Wothers, P. D.; Feeder, N.; Jones, P. G. Pure Appl.
Chem. 1999, 71, 385. Verevkin, S. P.; Peng, W. H.; Beckhaus, H. D.;
Ru¨chardt, C. Eur. J. Org. Chem. 1998, 2323. Jones, P. G.; Kirby, A. J.;
Komarov, I. V.; Wothers, P. D. J. Chem. Soc., Chem. Commun. 1998, 1695.
Barrows, S. E.; Storer, J. W.; Cramer, C. J.; French, A. D.; Truhlar, D. G.
J. Comput. Chem. 1998, 19, 1111. Tvaroska, I.; Carver, J. P. Carbohydr.
Res. 1998, 309, 1. Lenz, R.; Ley, S. V.; Owen, D. R.; Warriner, S. L.
Tetrahedron: Asymmetry 1998, 9, 2471. Anderson, J. E.; Cai, J.; Davies,
A. G. J. Chem. Soc., Perkin Trans. 2 1997, 2633. Ganguly, B.; Fuchs, B.
J. Org. Chem. 1997, 62, 8892. Buckley, N.; Oppenheimer, N. J. J. Org.
Chem. 1996, 61, 8039.
(6) Briggs, A. J.; Evans, C. M.; Glenn, R.; Kirby, A. J. J. Chem. Soc.,
Perkin Trans. 2 1983, 1637.
(7) Sinnott, M. L. AdV. Phys. Org. Chem. 1988, 24, 113. Sinnott, M. L.
In The Anomeric Effect and Associated Stereoelectronic Effects; Thatcher,
G. R. J., Ed.; ACS Symposium Series, American Chemical Society:
Washington, DC, 1993; Chapter 6. Thatcher, G. R. J.; Krol, E. S.; Cameron,
D. R. J. Chem. Soc., Perkin Trans. 2 1994, 683. Uchimaru, T.; Tsuzuki,
S.; Storer, J. W.; Tanabe, K.; Taira, K. J. Org. Chem. 1994, 59, 1835.
(8) Huber, R.; Vasella, A. Tetrahedron 1990, 46, 33. Urones, J. G.;
Marcos, I. S.; Basabe, P.; Sexmero, J.; Diez, D.; Garrido, N. M.; Prieto, J.
E. S. Tetrahedron 1990, 46, 2495. Messmer, A.; Hajo´s, G.; Tima´ri, G.
Tetrahedron 1992, 48, 8451. Brace, N. O. J. Org. Chem. 1993, 58, 1804.
Maligres, P. E.; Weissman, S. A.; Upadhyay, V.; Cianciosi, S. J.; Reamer,
R. A.; Purick, R. M.; Sager, J.; Rossen, K.; Eng, K. K.; Askin, D.; Volante,
R. P.; Reider, P. J. Tetrahedron 1996, 52, 3327. Loeppky, R. N.; Cui, W.
Tetrahedron Lett. 1998, 39, 1845. Berges, D. A.; Fan, J.; Devinck, S.;
Mower, K. J. Org. Chem. 2000, 65, 889.
(9) Perrin, C. L.; Engler, R. E.; Young, D. B. J. Am. Chem. Soc. 2000,
122, 4877. Graczyk, P. P.; Mikolajczyk, M. J. Org. Chem. 1996, 61, 2995.
Wipf, P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 11678. Brown, R. S.;
Bennet, A. J.; SÄlebocka-Tilk, H. Acc. Chem. Res. 1992, 25, 481. Brown,
R. S.; Bennet, A. J.; SÄlebocka-Tilk, H.; Jodhan, A. J. Am. Chem. Soc. 1992,
114, 3092. Caserio, M. C.; Shih, P.; Fisher, C. L. J. Org. Chem. 1991, 56,
5517. Agami, C.; Couty, F.; Prince, B.; Puchot, C. Tetrahedron 1991, 47,
4343. Bennet, A. J.; Slebocka-Tilk, H.; Brown, R. S.; Guthrie, J. P.; Jodhan,
A. J. Am. Chem. Soc. 1990, 112, 8497. Clennan, E. L.; L’Esperance, R. P.;
Lewis, K. K. J. Org. Chem. 1986, 51, 1440.
(3) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry;
Pergamon: Oxford, 1983. Deslongchamps, P. Tetrahedron 1975, 31, 2463.
(4) Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96, 4048. Lehn,
J.-M.; Wipff, G. HelV. Chim. Acta 1978, 61, 1274. Faˇrcas¸iu, D.; Horsley,
J. A. J. Am. Chem. Soc. 1980, 102, 4906. Pullumbi, P.; Lemeune, S.; Barbe,
J.-M.; Trichet, A.; Guilard, R. THEOCHEM (J. Mol. Struct.) 1998, 432,
169.
10.1021/ja004240q CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/20/2001